大脑网络将大脑区域之间的复杂连接性描述为图形结构,这为研究脑连接素提供了强大的手段。近年来,图形神经网络已成为使用结构化数据的普遍学习范式。但是,由于数据获取的成本相对较高,大多数大脑网络数据集的样本量受到限制,这阻碍了足够的培训中的深度学习模型。受元学习的启发,该论文以有限的培训示例快速学习新概念,研究了在跨数据库中分析脑连接组的数据有效培训策略。具体而言,我们建议在大型样本大小的数据集上进行元训练模型,并将知识转移到小数据集中。此外,我们还探索了两种面向脑网络的设计,包括Atlas转换和自适应任务重新启动。与其他训练前策略相比,我们的基于元学习的方法实现了更高和稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似之处的新见解。
translated by 谷歌翻译
超声检查是乳腺癌诊断的重要常规检查,这是由于其无创,无辐射和低成本的特性。但是,由于其固有的局限性,乳腺癌的诊断准确性仍然受到限制。如果我们可以通过乳房超声图像(BUS)精确诊断乳腺癌,那将是一个巨大的成功。已经提出了许多基于学习的计算机辅助诊断方法来实现乳腺癌诊断/病变分类。但是,其中大多数需要预定的ROI,然后对ROI内的病变进行分类。常规的分类骨架,例如VGG16和RESNET50,可以在没有ROI要求的情况下获得有希望的分类结果。但是这些模型缺乏解释性,因此限制了它们在临床实践中的使用。在这项研究中,我们提出了一种具有可解释特征表示的超声图像中乳腺癌诊断的新型无ROI模型。我们利用解剖学的先验知识,即恶性肿瘤和良性肿瘤在不同的组织层之间具有不同的空间关系,并提出了悬停转换器来提出这种先验知识。提出的悬停式跨界块水平和垂直地提取层间和层内空间信息。我们进行并释放一个开放的数据集GDPH&SYSUCC,以用于公共汽车中的乳腺癌诊断。通过与四个基于CNN的模型和两个Vision Transformer模型进行比较,通过五倍的交叉验证来评估所提出的模型。它通过最佳模型可解释性实现最新的分类性能。同时,我们提出的模型在仅给出一张公交图像时,在乳腺癌诊断方面优于两名高级超声检查员。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
用于解决具有量化消息传递的实际边缘计算系统中的一般机器学习(ML)问题的联邦学习(FL)算法的最佳设计仍然是一个打开问题。本文考虑了服务器和工人在发送消息之前具有不同的计算和通信能力以及使用量化的优势计算系统。为了探讨这种优势计算系统中的FL的全部潜力,我们首先介绍一般的FL算法,即GenQSGD,由全局和局部迭代,迷你批量大小和步骤尺寸序列参数化。然后,我们分析其对任意步长序列的融合,并指定三个常用的步大规则下的收敛结果,即常数,指数和递减的步长规则。接下来,我们优化算法参数,以最小化时间约束和收敛误差约束下的能量成本,重点是FL的整体实施过程。具体地,对于在每个考虑的步长规则下的任何给定的步骤尺寸序列,我们优化全局和本地迭代和迷你批量大小的数量,以最佳地实现具有预设步长序列的应用程序的FL。我们还优化了步骤序列以及这些算法参数,以探索FL的全部潜力。由此产生的优化问题是具有非可分性约束函数的非凸面问题。我们提出了使用通用内近似(GIA)的迭代算法来获得KKT点和用于解决互补几何编程(CGP)的技巧。最后,我们用现有的FL算法用优化的算法参数进行了数值展示了GenQSGD的显着收益,并揭示了最佳地设计了一般FL算法的重要性。
translated by 谷歌翻译
近年来,图像识别应用程序已迅速发展。在不同的领域中出现了大量的研究和技术,例如人脸识别,行人和车辆重新识别,地标检索和产品识别。在本文中,我们提出了一种实用的轻质图像识别系统,名为PP-Shitu,包括以下3个模块,主体检测,特征提取和矢量搜索。我们介绍了公制学习,深哈希,知识蒸馏和模型量化,包括提高精度和推理速度的流行策略。具有上述策略,PP-Shitu在不同的场景中运行良好,其中一组模型在混合数据集上培训。不同数据集和基准测试的实验表明,该系统在图像识别的不同域中广泛有效。所有上述型号都是开放的,并且代码在PaddlePaddle上的GitHub存储库Paddleclas中提供。
translated by 谷歌翻译
用于联合学习(FL)的最佳算法设计仍然是一个打开的问题。本文探讨了实用边缘计算系统中FL的全部潜力,其中工人可能具有不同的计算和通信功能,并且在服务器和工人之间发送量化的中间模型更新。首先,我们介绍了FL,即GenQSGD的一般量化并行迷你批量随机梯度下降(SGD)算法,即GenQSGD,其由全球迭代的数量参数化,所有工人的本地迭代的数量以及迷你批量大小。我们还分析了其算法参数的任何选择的收敛误差。然后,我们优化算法参数,以最小化时间约束和收敛误差约束下的能量成本。优化问题是具有非可分辨率约束函数的具有挑战性的非凸面问题。我们提出了一种迭代算法,可以使用高级优化技术获得KKT点。数值结果证明了现有的GenQSGD的显着增益,并揭示了最佳设计的重要性FL算法。
translated by 谷歌翻译
联邦学习(FL)已成为一个热门研究领域,以在拥有敏感本地数据的多个客户中对机器学习模型进行协作培训。然而,主要使用随机梯度下降(SGD)研究了不受约束的联邦优化,该梯度下降可能会缓慢收敛,并且限制了联邦优化的优化,这更具挑战性,迄今尚未研究。本文分别研究了基于样本和基于特征的联合优化,并考虑了每个人的无限制和约束非凸问题。首先,我们建议使用随机连续的凸近似(SSCA)和迷你批次技术提出FL算法。这些算法可以充分利用目标和约束函数的结构,并逐步利用样品。我们表明,所提出的FL算法分别收敛到固定点和相应不受约束和约束的非凸问题的固定点和Karush-Kuhn-Tucker(KKT)点。接下来,我们提供算法示例,每回合具有吸引人的计算复杂性和通信负载。我们表明,未约束的联邦优化算法示例与动量SGD相同,与FL算法相同,并在SSCA和动量SGD之间提供分析连接。最后,数值实验证明了在收敛速度,通信和计算成本以及模型规范中提出算法的固有优势。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译