We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its $\kappa$-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in $\kappa$. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing $\kappa$. Numerical simulations demonstrate the effectiveness of LPI.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
图像变压器最近使用监督(VIT,DEIT等)或自我监督(BEIT,MAE等)预训练技术取得了显着的自然图像理解进展。在本文中,我们提出了\ textbf {dit},一种自我保护的预训练\ textbf {d} ocument \ textbf {i} mage \ textbf {t} ransformer模型,使用大规模的不尺度的文本图像用于文档AI任务,这是必不可少的,因为由于缺乏人类标记的文档图像,因此没有受到监督的同行。我们将DIT作为骨干网络在各种基于视觉的文档AI任务中,包括文档图像分类,文档布局分析,表检测以及OCR的文本检测。实验结果表明,自我监管的预训练的DIT模型可在这些下游任务上实现新的最新结果,例如文档图像分类(91.11 $ \ rightarrow $ 92.69),文档布局分析(91.0 $ \ rightArow $ 94.9),表检测(94.23 $ \ rightArrow $ 96.55)和OCR的文本检测(93.07 $ \ rightarrow $ 94.29)。代码和预培训模型可在\ url {https://aka.ms/msdit}上公开获得。
translated by 谷歌翻译
移动和金融技术的繁荣已经为更广泛的人们培育和扩展了各种金融产品,这有助于倡导金融包容。它具有递减金融不平等的非琐碎的社会效益。然而,由独特的特征分布和新用户的信用史有限造成的个人金融风险评估的技术挑战,以及新用户的缺乏经验,在处理复杂数据和获得准确的标签方面,妨碍了进一步推动金融包容性。为了解决这些挑战,本文开发了一种新颖的转移学习算法(即转换),其结合了基于树的模型和内核方法的优点。 Transpoost设计具有平行树结构和有效的重量更新机制,具有理论上的保证,使其能够以$ O(n)$时间复杂度的高维特征和稀疏性在解决现实世界数据中。我们对两个公共数据集进行了广泛的实验,以及腾讯移动支付的独特大规模数据集。结果表明,在具有卓越效率的预测精度方面,转换越野越优于其他最先进的基准传输学习算法,表现出对数据稀疏性的更强的鲁棒性,并提供有意义的模型解释。此外,鉴于财务风险等级,转博稳定使金融服务提供商能够满足最多的用户,包括其他算法。也就是说,转船改善了金融包容性。
translated by 谷歌翻译
文档AI或Document Intelligence是一个相对较新的研究主题,指的是自动阅读,理解和分析业务文档的技术。它是自然语言处理和计算机视觉的重要研究方向。近年来,深度学习技术的普及已经大大提高了文档AI的发展,如文件布局分析,视觉信息提取,文档视觉问题应答,文档图像分类等。本文简要评论了一些代表性模型,任务和基准数据集。此外,我们还介绍了早期的启发式规则的文档分析,统计机器学习算法,深度学习方法,尤其是预训练方法。最后,我们展望未来的Document AI研究方向。
translated by 谷歌翻译
由于其有效的模型架构以及大规模未标记的扫描/数字出生的文件的优势,在各种视觉上丰富的文档理解任务中已经证明了文本和布局的预先培训。我们提出了具有新的预培训任务的Layoutlmv2架构,以在单个多模态框架中模拟文本,布局和图像之间的交互。具体地,对于双流多模态变压器编码器,LayOutLMV2不仅使用现有屏蔽的视觉语言建模任务,还使用新的文本图像对齐和文本图像匹配任务,这使得它更好地捕获跨模块交互在预训练阶段。同时,它还将空间感知的自我注意机制集成到变压器架构中,以便模型可以完全理解不同文本块之间的相对位置关系。实验结果表明,LayoutLMV2优于大幅度的LayOutlm,并在大量下游的下游富有的文件理解任务中实现了新的最先进的结果,包括Funsd(0.7895 $ \至0.8420美元),电源线(0.9493 $ \至0.9601美元),Srie(0.9524 $ \至0.9781美元),Kleister-NDA(0.8340 $ \ 0.8520美元),RVL-CDIP(0.9443 $ \至0.9564美元),DOCVQA(0.7295 $ \至0.8672美元) 。我们使我们的模型和代码公开可用于\ url {https://aka.ms/layoutlmv2}。
translated by 谷歌翻译
Using functional magnetic resonance imaging (fMRI) and deep learning to explore functional brain networks (FBNs) has attracted many researchers. However, most of these studies are still based on the temporal correlation between the sources and voxel signals, and lack of researches on the dynamics of brain function. Due to the widespread local correlations in the volumes, FBNs can be generated directly in the spatial domain in a self-supervised manner by using spatial-wise attention (SA), and the resulting FBNs has a higher spatial similarity with templates compared to the classical method. Therefore, we proposed a novel Spatial-Temporal Convolutional Attention (STCA) model to discover the dynamic FBNs by using the sliding windows. To validate the performance of the proposed method, we evaluate the approach on HCP-rest dataset. The results indicate that STCA can be used to discover FBNs in a dynamic way which provide a novel approach to better understand human brain.
translated by 谷歌翻译
实时音乐伴奏的生成在音乐行业(例如音乐教育和现场表演)中具有广泛的应用。但是,自动实时音乐伴奏的产生仍在研究中,并且经常在逻辑延迟和暴露偏见之间取决于权衡。在本文中,我们提出了Song Driver,这是一种无逻辑延迟或暴露偏见的实时音乐伴奏系统。具体而言,Songdriver将一个伴奏的生成任务分为两个阶段:1)安排阶段,其中变压器模型首先安排了和弦,以实时进行输入旋律,并在下一阶段加速了和弦,而不是播放它们。 2)预测阶段,其中CRF模型基于先前缓存的和弦生成了即将到来的旋律的可播放的多轨伴奏。通过这种两相策略,歌手直接生成即将到来的旋律的伴奏,从而达到了零逻辑延迟。此外,在预测时间步的和弦时,歌手是指第一阶段的缓存和弦,而不是其先前的预测,这避免了暴露偏见问题。由于输入长度通常在实时条件下受到限制,因此另一个潜在的问题是长期顺序信息的丢失。为了弥补这一缺点,我们在当前时间步骤作为全球信息之前从长期音乐作品中提取了四个音乐功能。在实验中,我们在一些开源数据集上训练歌手,以及由中国风格的现代流行音乐得分构建的原始\```````'''aisong数据集。结果表明,歌手在客观和主观指标上均优于现有的SOTA(最先进)模型,同时大大降低了物理潜伏期。
translated by 谷歌翻译
结构化的修剪技术在用于图像分类任务的卷积神经网络上取得了出色的压缩性能。但是,大多数现有方法都是面向重量的,当原始模型的训练不佳时,它们的修剪结果可能不令人满意。也就是说,需要一个全面训练的模型来提供有用的权重信息。这可能是耗时的,并且修剪结果对模型参数的更新过程敏感。在本文中,我们提出了一个名为“平均过滤器信息熵(AFIE)”的度量,以测量每个滤镜的重要性。它是由三个主要步骤计算得出的,即每个卷积层的“输入输出”矩阵的低排放分解,所获得的特征值的归一化以及基于信息熵的滤波器重要性计算。通过利用拟议的AFIE,无论是否完全训练原始模型,建议的框架都能对每个过滤器进行稳定的重要性评估。我们基于Alexnet,VGG-16和Resnet-50实施AFIE,并分别对MNIST,CIFAR-10和Imagenet进行测试。实验结果令人鼓舞。我们出乎意料地观察到,对于我们的方法,即使原始模型仅经过一个时代的训练,每个过滤器的重要性评估在模型经过全面训练时都与结果相同。这表明拟议的修剪策略可以在原始模型的训练过程的开始阶段有效地执行。
translated by 谷歌翻译
风险评分系统已被广泛地部署在许多应用程序中,这些应用程序根据用户的行为序列将风险分数分配给了。尽管许多具有复杂设计的深度学习方法已经取得了令人鼓舞的结果,但由于公平,解释性和合规性考虑,黑框的性质阻碍了他们的应用。在这些敏感情况下,基于规则的系统被认为是可靠的。但是,构建规则系统是劳动密集型的。专家需要从用户行为序列,基于统计数据的设计规则中找到信息统计信息,并为每个规则分配权重。在本文中,我们弥合了有效但黑色框模型与透明规则模型之间的差距。我们提出了一种两阶段的方法Rudi,该方法将黑框教师模型的知识提炼成基于规则的学生模型。我们设计了一种基于蒙特卡洛树搜索的统计生成方法,该方法可以在第一阶段提供一组信息统计信息。然后,通过模仿教师模型的输出,将统计数据与我们提出的神经逻辑网络组成逻辑规则。我们在三个现实世界公共数据集和一个工业数据集上评估了Rudi,以证明其有效性。
translated by 谷歌翻译