随着机器学习技术的发展,研究的注意力已从单模式学习转变为多模式学习,因为现实世界中的数据以不同的方式存在。但是,多模式模型通常比单模式模型具有更多的信息,并且通常将其应用于敏感情况,例如医疗报告生成或疾病鉴定。与针对机器学习分类器的现有会员推断相比,我们关注的是多模式模型的输入和输出的问题,例如不同的模式,例如图像字幕。这项工作通过成员推理攻击的角度研究了多模式模型的隐私泄漏,这是确定数据记录是否涉及模型培训过程的过程。为了实现这一目标,我们提出了多种模型的成员资格推理(M^4i),分别使用两种攻击方法来推断成员身份状态,分别为基于公表示的(MB)M^4i和基于特征(FB)M^4i。更具体地说,MB M^4i在攻击时采用相似性指标来推断目标数据成员资格。 FB M^4i使用预先训练的阴影多模式提取器来通过比较提取的输入和输出功能的相似性来实现数据推理攻击的目的。广泛的实验结果表明,两种攻击方法都可以实现强大的性能。在不受限制的情况下,平均可以获得攻击成功率的72.5%和94.83%。此外,我们评估了针对我们的攻击的多种防御机制。 M^4i攻击的源代码可在https://github.com/multimodalmi/multimodal-membership-inference.git上公开获得。
translated by 谷歌翻译
由长期记忆复发网络(LSTM-RNN)和变压器代表的最先进的神经网络语言模型(NNLMS)和变压器变得非常复杂。当获得有限的培训数据时,它们容易过度拟合和泛化。为此,本文提出了一个总体完整的贝叶斯学习框架,其中包含三种方法,以说明LSTM-RNN和Transformer LMS的潜在不确定性。分别使用贝叶斯,高斯过程和变异LSTM-RNN或变压器LMS对其模型参数,神经激活的选择和隐藏输出表示的不确定性。有效的推理方法被用来自动选择使用神经体系结构搜索的最佳网络内部组件作为贝叶斯学习。还使用了最少数量的蒙特卡洛参数样本。这些允许贝叶斯NNLM培训和评估中产生的计算成本最小化。实验是针对两项任务进行的:AMI符合转录和牛津-BBC唇读句子2(LRS2)使用最先进的LF-MMI培训的有效的TDNN系统重叠的语音识别,具有数据增强,扬声器的适应和多种音频,频道横梁成形以进行重叠的语音。基线LSTM-RNN和Transformer LMS具有估计的模型参数和辍学正则化的一致性改进,就困惑性和单词错误率(WER)获得了两项任务。特别是,在LRS2数据上,在基线LSTM-RNN和Transformer LMS中,在贝叶斯NNLMS及其各自的Baselines之间的模型组合后,在基线LSTM-RNN和Transferes LMS上分别获得了最高1.3%和1.2%的绝对降低(相对12.1%和11.3%)。 。
translated by 谷歌翻译
对于视觉操作任务,我们旨在表示具有语义上有意义的功能的图像内容。但是,从图像中学习隐式表示通常缺乏解释性,尤其是当属性交织在一起时。我们专注于仅从2D图像数据中提取删除的3D属性的具有挑战性的任务。具体而言,我们专注于人类外观,并从RGB图像中学习穿着人类的隐性姿势,形状和服装表示。我们的方法学习了这三个图像属性的分解潜在表示的嵌入式,并通过2到3D编码器解码器结构可以有意义地重新组装特征和属性控制。 3D模型仅从学到的嵌入空间中的特征图推断出来。据我们所知,我们的方法是第一个解决这个高度不足的问题的跨域分解的方法。我们在定性和定量上证明了框架在虚拟数据上3D重建中转移姿势,形状和服装的能力,并显示隐性形状损失如何使模型恢复细粒度重建细节的能力有益。
translated by 谷歌翻译
与传统方法相比,学到的图像压缩已在PSNR和MS-SSIM中取得了非凡的速率延伸性能。但是,它遭受了密集的计算,这对于现实世界的应用是无法忍受的,目前导致其工业应用有限。在本文中,我们将神经体系结构搜索(NAS)介绍到具有较低延迟的更有效网络,并利用量化以加速推理过程。同时,已经为提高效率而做出了工程努力。使用PSNR和MS-SSIM的混合损失以更好的视觉质量进行了优化,我们获得的MSSIM比JPEG,JPEG XL和AVIF在所有比特率上都高得多,而JPEG XL和AVIF之间的PSNR则获得了PSNR。与JPEG-Turbo相比,我们的LIC的软件实施实现了可比较甚至更快的推理速度,而多次比JPEG XL和AVIF快。此外,我们的LIC实施达到了145 fps的惊人吞吐量,用于编码为208 fps,用于在Tesla T4 GPU上解码1080p图像。在CPU上,我们实施的延迟与JPEG XL相当。
translated by 谷歌翻译
及时调整尝试更新预训练模型中的一些特定任务参数。它的性能与在语言理解和发电任务上的完整参数设置的微调相当。在这项工作中,我们研究了迅速调整神经文本检索器的问题。我们引入参数效率的及时调整,以调整跨内域,跨域和跨主题设置的文本检索。通过广泛的分析,我们表明该策略可以通过基于微调的检索方法来减轻两个问题 - 参数 - 信息和弱推广性。值得注意的是,它可以显着改善检索模型的零零弹性概括。通过仅更新模型参数的0.1%,及时调整策略可以帮助检索模型获得比所有参数更新的传统方法更好的概括性能。最后,为了促进回猎犬的跨主题概括性的研究,我们策划并发布了一个学术检索数据集,其中包含18K查询的87个主题,使其成为迄今为止特定于特定于主题的主题。
translated by 谷歌翻译
回归学习是经典的,是医学图像分析的基础。它为许多关键应用程序提供了连续的映射,例如属性估计,对象检测,分割和非刚性注册。但是,先前的研究主要以案例标准(如均方误差)为优化目标。他们忽略了非常重要的人口相关标准,这正是许多任务中的最终评估指标。在这项工作中,我们建议通过有关直接优化细粒相关损失的新型研究来重新审视经典回归任务。我们主要探索两个互补相关索引作为可学习的损失:Pearson线性相关(PLC)和Spearman等级相关性(SRC)。本文的贡献是两个折叠。首先,对于全球层面的PLC,我们提出了一项策略,以使其对异常值进行强大的态度并规范关键分布因素。这些努力显着稳定学习并扩大了PLC的功效。其次,对于本地级别的SRC,我们提出了一种粗到精细的方案,以减轻样品之间确切排名顺序的学习。具体而言,我们将样本排名的学习转换为样本之间相似关系的学习。我们在两个典型的超声图像回归任务上广泛验证了我们的方法,包括图像质量评估和生物措施测量。实验证明,通过直接优化相关性的细粒度指导,回归性能得到显着提高。我们提出的相关性损失是一般的,可以扩展到更重要的应用程序。
translated by 谷歌翻译
混合动力和端到端(E2E)自动语音识别(ASR)系统之间的基本建模差异在其中创造了巨大的多样性和互补性。本文研究了混合TDNN和构型E2E ASR系统的基于多通的逆转和交叉适应系统组合方法。在多通恢复中,最先进的混合动力LF-MMI训练有素的CNN-TDNN系统具有速度扰动,规格和贝叶斯学习隐藏单元供款(LHUC)扬声器的适应器,以在被恢复之前产生初始的N-tesk输出由扬声器适应构象异构体系统,使用2向跨系统得分插值。在交叉适应中,混合CNN-TDNN系统适用于构象异构体系统的1好的输出,反之亦然。在300小时的总机语料库上进行的实验表明,使用两种系统组合方法中的任何一个得出的组合系统都超过了单个系统。在NIST HUB5'00,RT03和RT03和RT02评估数据。
translated by 谷歌翻译
图像协调旨在调整前景的外观,使其更兼容背景。由于对背景照明方向缺乏了解,现有的作品无法产生现实的前景着色。在本文中,我们将图像协调分解为两个子问题:1)背景图像的照明估计和前景对象的渲染。在解决这两个子问题之前,我们首先通过神经渲染框架学习方向感知的照明描述符,其中密钥是一个着色模块,其将阴影场分解为给定深度信息的多个着色组件。然后我们设计背景照明估计模块,以从背景中提取方向感知的照明描述符。最后,照明描述符与神经渲染框架结合使用,以生成包含新颖谐波阴影的统一前景图像。此外,我们构建了一种照片 - 现实的合成图像协调数据集,其包含基于图像的照明的许多阴影变化。对该数据集的广泛实验证明了该方法的有效性。我们的数据集和代码将公开可用。
translated by 谷歌翻译
提供公共产品的公共政策,特别是那些涉及通过限制个人自由来合作,始终会产生对治理合法性的争论。多智能体增强学习(MARL)方法适用于支持以个人利益的成本提供公共政策的公共政策的合法性。在这些政策中,区域间协作大流行控制是一个突出的例子,这对于面临的全球大流行像Covid-19的越来越多的联系方式变得更加重要。在不同的地区系统中,已经观察到不同的协作策略模式,但它缺乏分析过程,以获得这些策略的合法性。在本文中,我们利用大流行控制的区域间合作为例,以展示Marl的必要性,从而合法化执行此类区域间合作的政策。在示例性环境中的实验结果表明,我们的Marl方法能够展示对合作供应公共物品的个人自由的有效性和必要性。我们的Marl代理商在不同的协作水平下学习了不同的最佳政策,这是一种可解释的合作模式,有助于平衡不同类型的地区遭受的损失,从而促进整体福利。与此同时,通过更高的合作水平学习政策会产生更高的全球奖励,这阐述了利益,从而为促进区域间合作的合法性提供了一种新的理由。因此,我们的方法显示了Marl在计算建模和支持同意管理理论中,由诺贝尔奖获奖者J. M. Buchanan开发。
translated by 谷歌翻译
将对象检测和ID嵌入提取到统一网络的单次多对象跟踪,近年来取得了开创性的结果。然而,目前的单次追踪器仅依赖于单帧检测来预测候选界限盒,当面对灾难性的视觉下降时,例如运动模糊,闭塞时可能是不可靠的。一旦检测器错误地被错误地归类为背景,将不再维护其相应的ROCKLET的时间一致性。在本文中,我们首先通过提出重新检查网络恢复被错误分类为“假背景”的边界框。重新检查网络创新地扩展了ID从数据关联嵌入ID的角色,以通过有效地将先前的轨迹传播到具有小开销的当前帧的运动预测。请注意,传播结果由独立和有效的嵌入搜索产生,防止模型过度依赖于检测结果。最终,它有助于重新加载“假背景”并修复破碎的Tracklet。在强大的基线Cstrack上建立一个新的单次追踪器,分别通过70.7 $ 76.4,70.6 $ \右前场达到76.3美元的MOT17和MOT17。它还达到了新的最先进的Mota和IDF1性能。代码在https://github.com/judasdie/sots发布。
translated by 谷歌翻译