与置换不变的代理框架的合作多元化学习(MARL)在现实世界应用中取得了巨大的经验成功。不幸的是,由于许多代理商的诅咒以及对现有作品中的关系推理的有限探索,对这个MARL问题的理论理解缺乏。在本文中,我们验证了变压器是否实现了复杂的关系推理,并提出和分析了与变压器近似器的无模型和基于模型的离线MARL算法。我们证明,基于模型和基于模型的算法的次级次数差距分别与代理数量分别独立于和对数,这减轻了许多试剂的诅咒。这些结果是变压器的新概括误差结合的结果以及对变压器系统动力学的最大似然估计(MLE)的新分析。我们的基于模型的算法是第一个明确利用代理的置换不变性的可证明有效的MARL算法。
translated by 谷歌翻译
我们研究了与中央服务器和多个客户的联合学习多臂强盗设置中最佳手臂识别的问题。每个客户都与多臂强盗相关联,其中每个手臂在具有未知均值和已知方差的高斯分布之后,每个手臂都能产生{\ em I.i.d。} \奖励。假定所有客户的武器集相同。我们定义了两个最佳手臂的概念 - 本地和全球。客户的当地最好的手臂是客户本地手臂中最大的手臂,而全球最佳手臂是所有客户平均平均值最大的手臂。我们假设每个客户只能从当地的手臂上观察奖励,从而估计其当地最好的手臂。客户在上行链路上与中央服务器进行通信,该上行链路需要每个上行链路的使用费用为$ C \ ge0 $单位。在服务器上估算了全球最佳手臂。目的是确定当地最佳武器和全球最佳臂,总成本最少,定义为所有客户的ARM选择总数和总通信成本的总和,但在错误概率上取决于上限。我们提出了一种基于连续消除的新型算法{\ sc fedelim},仅在指数时间步骤中进行通信,并获得高概率依赖性实例依赖性上限,以其总成本。我们论文的关键要点是,对于任何$ c \ geq 0 $,错误概率和错误概率足够小,{\ sc fedelim}下的ARM选择总数(分别为\ the总费用)最多为〜$ 2 $(reves 。〜 $ 3 $)乘以其在每个时间步骤中通信的变体下的ARM选择总数的最大总数。此外,我们证明后者在期望最高的恒定因素方面是最佳的,从而证明{\ sc fedelim}中的通信几乎是无成本的。我们从数值验证{\ sc fedelim}的功效。
translated by 谷歌翻译
这项工作系统地调查了深度图像去噪者(DIDS)的对抗性稳健性,即,可以从嘈杂的观察中恢复地面真理的噪音,因对抗性扰动而变化。首先,为了评估DIDS的稳健性,我们提出了一种新的逆势攻击,即观察到的零平均攻击({\ SC obsatk}),对给定嘈杂的图像来制作对抗零均匀扰动。我们发现现有的确实容易受到{\ SC Obsatk}产生的对抗噪声。其次,为了强化犯罪,我们提出了一种对抗性培训策略,混合对抗训练({\ SC帽}),共同列车与对抗性和非对抗性嘈杂的数据做出,以确保重建质量很高,并且围绕非对抗性数据是局部光滑的。所得到的确实可以有效去除各种类型的合成和对抗性噪声。我们还发现,DIDS的稳健性使其在看不见的真实噪音上的概括能力。实际上,{\ SC帽子} -Tromed DID可以从真实世界的噪音中恢复高质量的清洁图像,即使没有真正的嘈杂数据训练。基准数据集的广泛实验,包括SET68,PolyU和SIDD,证实了{\ SC Obsatk}和{\ SC帽}的有效性。
translated by 谷歌翻译
类增量学习(CIL)旨在以相位逐相的方式学习多级分类器,其中仅在每个阶段提供类的子集的数据。以前的作品主要专注于初始之后减轻阶段的遗忘。但是,我们发现,在初始阶段改善CIL也是一个有希望的方向。具体而言,我们通过实验表明,在初始阶段直接鼓励CIL学习者将类似的表示类似的表示,因为在所有类别上训练的模型可以大大提升CIL性能。由此激励,我们研究了NA \“IVERY训练初始阶段模型和Oracle模型之间的差异。具体来说,由于这两个模型之间的一个主要区别是培训类的数量,我们研究了这种差异如何影响模型表示。我们发现,通过较少的培训类,每个班级的数据表示位于一个漫长而狭窄的地区;通过更多的培训类,每个阶级的陈述更统一地散射。灵感来自这种观察,我们提出了课堂上的去相关性(CWD)有效地规范了每个类的表示,以更统一地散射,从而模拟与所有类联合训练的模型(即Oracle模型)。我们的CWD易于实施,易于插入现有方法。各种各样的实验基准数据集显示CWD一直在且显着提高现有最先进方法的性能约为1 \%至3 \%。代码将被释放。
translated by 谷歌翻译
使用信息理论原理,我们考虑迭代半监督学习(SSL)算法的概括误差(Gen-Error),这些算法迭代地生成了大量未标记数据的伪标记,以逐步完善模型参数。与{\ em绑定} Gen-Error的大多数以前的作品相反,我们为Gen-Error提供了{\ em Exact}的表达,并将其专门为二进制高斯混合模型。我们的理论结果表明,当阶级条件差异不大时,Gen-Error随着迭代次数的数量而减少,但很快就会饱和。另一方面,如果类的条件差异(因此,类别之间的重叠量)很大,则Gen-Error随迭代次数的增加而增加。为了减轻这种不良效果,我们表明正则化可以减少Gen-Error。通过对MNIST和CIFAR数据集进行的广泛实验来证实理论结果,我们注意到,对于易于分类的类别,经过几次伪标记的迭代,Gen-Error会改善,但此后饱和,并且更难难以实现。区分类别,正则化改善了概括性能。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
我们研究固定预算设置中线性匪徒中最佳手臂识别的问题。通过利用G-Optimal设计的属性并将其纳入ARM分配规则,我们设计了一种无参数算法,基于最佳设计的基于设计的线性最佳臂识别(OD-Linbai)。我们提供了OD-Linbai的失败概率的理论分析。 OD-Linbai的性能并非所有最优差距,而是取决于顶部$ d $臂的差距,其中$ d $是线性匪徒实例的有效维度。补充,我们为此问题提供了一个Minimax下限。上限和下限表明,OD-Linbai是最佳的最佳选择,直到指数中的恒定乘法因素,这是对现有方法的显着改进(例如,贝耶斯加普,和平,线性化和GSE),并解决了确定确定该问题的问题。在固定预算设置中学习最好的手臂的困难。最后,数值实验表明,对各种真实和合成数据集的现有算法进行了相当大的经验改进。
translated by 谷歌翻译
本文研究了一般D-均匀的HyperGraph随机块模型(D-HSBM)中精确恢复的基本限制,其中n个节点被分配到具有相对大小的k差异群落中(p1,...,pk)。具有基数d的节点的每个子集都是独立生成的,作为订单-D超边,其一定概率取决于D节点所属的地面真相群落。目标是根据观察到的超图准确地恢复K隐藏的社区。我们表明存在一个尖锐的阈值,因此可以在阈值之上实现精确的恢复,而不可能在阈值以下(除了将精确指定的小参数制度之外)。该阈值是根据我们称为社区之间普遍的Chernoff-Hellinger分歧的数量来表示的。我们对该通用模型的结果恢复了标准SBM和D-HSBM的先前结果,其中两个对称群落作为特殊情况。在证明我们的可实现结果的途径中,我们开发了一种符合阈值的多项式两阶段算法。第一阶段采用某种超图光谱聚类方法来获得社区的粗略估计,第二阶段通过局部细化步骤单独完善每个节点,以确保精确恢复。
translated by 谷歌翻译
我们从频道明智激活的角度调查CNN的对抗性鲁棒性。通过比较\ Textit {非鲁棒}(通常训练)和\ exingit {REXITIT {REARUSTIFIED}(普及培训的)模型,我们观察到对抗性培训(AT)通过将频道明智的数据与自然的渠道和自然的对抗激活对齐来强调CNN同行。然而,在处理逆势数据时仍仍会过度激活以\ texit {excy-computive}(nr)的频道仍会过度激活。此外,我们还观察到,在所有课程上不会导致类似的稳健性。对于强大的类,具有较大激活大小的频道通常是更长的\ extedit {正相关}(pr)到预测,但这种对齐不适用于非鲁棒类。鉴于这些观察结果,我们假设抑制NR通道并对齐PR与其相关性进一步增强了在其下的CNN的鲁棒性。为了检查这个假设,我们介绍了一种新的机制,即\下划线{C} Hannel-Wise \ Underline {i} Mportance的\下划线{F} eature \ Underline {s}选举(CIFS)。 CIFS通过基于与预测的相关性产生非负乘法器来操纵某些层的激活。在包括CIFAR10和SVHN的基准数据集上的广泛实验明确验证了强制性CNN的假设和CIFS的有效性。 \ url {https://github.com/hanshuyan/cifs}
translated by 谷歌翻译
神经常规差分方程(ODES)最近在各种研究域中引起了不断的关注。有一些作品研究了神经杂物的优化问题和近似能力,但他们的鲁棒性尚不清楚。在这项工作中,我们通过探索神经杂物经验和理论上的神经杂物的鲁棒性质来填补这一重要差异。我们首先通过将它们暴露于具有各种类型的扰动并随后研究相应输出的变化来提出基于神经竞争的网络(odeNets)的鲁棒性的实证研究。与传统的卷积神经网络(CNNS)相反,我们发现odeenets对随机高斯扰动和对抗性攻击示例的更稳健。然后,我们通过利用连续时间颂的流动的某种理想性能来提供对这种现象的富有识别理解,即积分曲线是非交叉的。我们的工作表明,由于其内在的稳健性,它很有希望使用神经杂散作为构建强大的深网络模型的基本块。为了进一步增强香草神经杂物杂物的鲁棒性,我们提出了时间不变的稳定神经颂(Tisode),其通过时间不变性和施加稳态约束来规则地规则地规则地对扰动数据的流程。我们表明,Tisode方法优于香草神经杂物,也可以与其他最先进的架构方法一起制造更强大的深网络。 \ url {https://github.com/hanshuyan/tisode}
translated by 谷歌翻译