在过去的十年中,由于雷达目的的现场特异性,高保真射频(RF)建模和仿真工具的催化,在过去的十年中,经典方法的数据驱动公式迅速增长。尽管有这种激增,但有限的焦点已针对这些经典方法的理论基础。在这方面,作为我们正在进行的数据驱动的雷达时空自适应处理方法(Stap)的一部分,我们在雷达目标定位的背景下分析了精选子空间分离方法的渐近性能保证,并通过拟议目标位置估计的深度学习框架。在我们的方法中,我们通过使用RFView(由ISL Inc.开发的一个特定于站点的RF建模和模拟工具)将可变强度的目标随机放置在预定的约束区域中。在范围内,方位角和归一化自适应匹配过滤器(NAMF)测试统计量以及广义Sidelobe canceller(GSC)的输出功率的高度。使用我们的深度学习框架,我们从这些热图张量估算目标位置,以证明我们数据驱动方法在匹配和不匹配的设置中提供的可行性和显着改进。
translated by 谷歌翻译
模型压缩的目的是减小大型神经网络的大小,同时保持可比的性能。结果,通过减少冗余重量,神经元或层,可以大大降低资源有限应用中的计算和内存成本。提出了许多模型压缩算法,这些算法提供了令人印象深刻的经验成功。但是,对模型压缩的理论理解仍然受到限制。一个问题是了解网络是否比另一个相同结构更可压缩。另一个问题是量化有多少人可以通过理论上保证的准确性降解来修剪网络。在这项工作中,我们建议使用对稀疏敏感的$ \ ell_q $ -norm($ 0 <q <1 $)来表征可压缩性,并提供网络中的软稀疏性与受控程度的压缩程度之间的关系准确性降解结合。我们还开发了自适应算法,用于修剪我们理论所告知的网络中的每个神经元。数值研究表明,与标准修剪算法相比,提出的方法的表现有希望。
translated by 谷歌翻译
了解分布的整体和尾巴中的多元依赖性对于许多应用来说都是一个重要的问题,例如确保算法对于不经常但具有毁灭性效果的观测值是强大的。 Archimax Copulas是一个具有精确表示的分布家族,可以同时建模分布和分布的尾巴。与其在实践中通常进行的两者分开,不如将大量的其他信息纳入其中可能会改善观测值有限的尾巴的推断。在Archimax Copulas的随机表示的基础上,我们开发了一种非参数推断方法和采样算法。据我们所知,我们提出的方法是第一个允许高度灵活,可扩展的推理和采样算法,从而使Archimax Copulas在实际环境中增加了使用。我们在实验上与最新的密度建模技术进行了比较,结果表明,提出的方法有效地外推到尾部,同时缩放到更高的尺寸数据。我们的发现表明,所提出的算法可用于多种应用,在各种应用中,必须了解分配的批量和尾巴之间的相互作用,例如医疗保健和安全。
translated by 谷歌翻译
分析来自湍流流动模拟的大规模数据是内存密集型,需要大量资源。这一主要挑战强调了对数据压缩技术的需求。在这项研究中,我们应用基于矢量量化的物理知识的深度学习技术,以产生来自三维湍流流的模拟的离散,低维表示数据。深度学习框架由卷积层组成,并将物理限制融合在流量上,例如保留速度梯度的不可压缩性和全局统计特征。使用基于比较的相似性和物理学的度量来评估模型的准确性。训练数据集是由不可压缩,统计静止,各向同性的各向同性湍流的直接数值模拟产生的。该损失数据压缩方案的性能不仅通过静止,各向同性湍流流动的看不见的数据评估,而且还评估了来自衰减各向同性湍流的数据和泰勒 - 绿色涡流的数据。将压缩比(CR)定义为原始数据大小与压缩的比率,结果表明我们的基于向量量化的模型可以提供CR $ = 85 $与$ O的均线错误(MSE)提供CR $ = 85 $(10 ^ {-3})$,以及忠实地重现流程统计数据的预测,除了有一些损失的最小尺度。与最近基于传统的AutoEncoder的研究相比,其中压缩在连续空间中进行压缩,我们的模型将CR提高了30多美元,并按一大阶数减少了MSE。我们的压缩模​​型是一种有吸引力的解决方案,适用于需要快速,高质量和低开销编码和大数据的解码。
translated by 谷歌翻译
我们使用数据驱动方法使用尖端深度学习技术来模拟三维湍流流。深度学习框架包括流量的物理限制,例如保留速度梯度张量的不可压缩和全局统计不变。使用基于统计和物理的度量来评估模型的准确性。数据集来自立方框中的不可压缩,统计上固定,各向同性湍流的直接数值模拟。由于数据集的大小是内存密集,因此首先生成速度数据的低维表示,然后将其传递给序列预测网络,该预测网络学习基础数据的空间和时间相关性。通过使用矢量量化的AutoEncoder(VQ-AE)提取来执行维度降低,这就学习离散潜变量。对于序列预测,使用自然语言处理的变压器架构的思想,并与更多标准复发网络(如卷积LSTM)进行比较。这些架构被设计和训练,以执行序列以序列多级分类任务,其中它们采用固定长度(k)的输入序列,并预测具有固定长度(P)的序列,表示未来的时间瞬间流动。我们的短期预测结果表明,由于预测的自回归性质,两种模型的结果的准确性恶化了预测的快照。基于我们的诊断测试,训练有素的Conv变压器模型优于Conv-LSTM One,可以确定地,定量和定性,保留大规模并捕获良好的流量尺度,但在恢复小且间歇的流体运动时失效。
translated by 谷歌翻译
许多物理系统由普通的或部分微分方程描述,其解决方案由复杂域中的全象或亚纯函数给出。在许多情况下,只有在纯虚拟JW轴上的各个点上只观察到这些功能的大小,因为它们的阶段的相干测量通常是昂贵的。然而,期望在可能的情况下从幅度中检索丢失的阶段。为此,我们提出了一种基于Blaschke产品的物理漏险的深神经网络,用于相位检索。灵感来自赫尔森和Sarason定理,我们使用Blaschke产品神经网络(BPNN)来恢复Blaschke产品的合理功能系数,基于输入作为输入的幅度观察。然后使用得到的Rational函数进行相位检索。我们将BPNN与常规深度神经网络(NNS)进行比较多相检索问题,包括合成和当代的现实世界问题(例如,数据收集需要大量专业知识的超材料,并且耗时)。在每个阶段检索问题上,我们与不同尺寸和超参数设置的传统NNS群体进行比较。即使没有任何超参数搜索,我们发现BPNNS始终如一地优于稀缺数据场景中优化NNS的群体,并且尽管模型更小。结果又可以应用于计算超材料的折射率,这是物质科学新兴领域的重要问题。
translated by 谷歌翻译
我们提出了特征神经常规差分方程(C节点),该框架用于扩展神经常规微分方程(节点)之外的缺点。虽然节点模型将潜在状态的演变为对颂歌的解决方案,但是所提出的C节点模拟了潜在的潜在的演变作为其特征的一阶准线性部分微分方程(PDE)的解决方案,定义为PDE减少到ODES的曲线。反过来,还原允许应用标准框架,以解决PDE设置的杂散。另外,所提出的框架可以作为现有节点架构的扩展来投用,从而允许使用现有的黑盒颂歌求解器。我们证明了C节点框架通过展示不能由节点表示的功能来扩展经典节点,而是由C节点表示。我们通过在许多合成和实际数据场景中展示其性能,进一步研究了C节点框架的功效。经验结果展示了CIFAR-10,SVHN和MNIST数据集的提出方法提供的改进,如类似的计算预算作为现有节点方法。
translated by 谷歌翻译
Recommender Systems (RSs) are operated locally by different organizations in many realistic scenarios. If various organizations can fully share their data and perform computation in a centralized manner, they may significantly improve the accuracy of recommendations. However, collaborations among multiple organizations in enhancing the performance of recommendations are primarily limited due to the difficulty of sharing data and models. To address this challenge, we propose Decentralized Multi-Target Cross-Domain Recommendation (DMTCDR) with Multi-Target Assisted Learning (MTAL) and Assisted AutoEncoder (AAE). Our method can help multiple organizations collaboratively improve their recommendation performance in a decentralized manner without sharing sensitive assets. Consequently, it allows decentralized organizations to collaborate and form a community of shared interest. We conduct extensive experiments to demonstrate that the new method can significantly outperform locally trained RSs and mitigate the cold start problem.
translated by 谷歌翻译
联邦学习(FL)是一种在分布在大量可能异构客户端的私人数据上培训机器学习模型的方法,例如移动电话和物联网设备。在这项工作中,我们提出了一个名为Heterofl的新联合学习框架来解决具有较差的计算和通信能力的异构客户端。我们的解决方案可以实现具有不同计算复杂性的异构本地模型,并仍然产生单一的全局推理模型。我们的方法是挑战本地模型必须与全球模型共享相同的架构的现有工作的潜在工作。我们展示了提高流行培训的几种策略,并进行广泛的经验评估,包括三个数据集三个模型架构的五个计算复杂性水平。我们表明,根据客户端的功能,自适应分配子网是计算和通信有效的。
translated by 谷歌翻译
我们介绍了一种从高维时间序列数据学习潜在随机微分方程(SDES)的方法。考虑到从较低维潜在未知IT \ ^ O过程产生的高维时间序列,所提出的方法通过自我监督的学习方法学习从环境到潜在空间的映射和潜在的SDE系数。使用变形AutiaceOders的框架,我们考虑基于SDE解决方案的Euler-Maruyama近似的数据的条件生成模型。此外,我们使用最近的结果对潜在变量模型的可识别性来表明,所提出的模型不仅可以恢复底层的SDE系数,还可以在无限数据的极限中恢复底层的SDE系数,也可以最大潜在潜在变量。我们通过多个模拟视频处理任务验证方法,其中底层SDE是已知的,并通过真实的世界数据集。
translated by 谷歌翻译