Adversarial machine learning has been both a major concern and a hot topic recently, especially with the ubiquitous use of deep neural networks in the current landscape. Adversarial attacks and defenses are usually likened to a cat-and-mouse game in which defenders and attackers evolve over the time. On one hand, the goal is to develop strong and robust deep networks that are resistant to malicious actors. On the other hand, in order to achieve that, we need to devise even stronger adversarial attacks to challenge these defense models. Most of existing attacks employs a single $\ell_p$ distance (commonly, $p\in\{1,2,\infty\}$) to define the concept of closeness and performs steepest gradient ascent w.r.t. this $p$-norm to update all pixels in an adversarial example in the same way. These $\ell_p$ attacks each has its own pros and cons; and there is no single attack that can successfully break through defense models that are robust against multiple $\ell_p$ norms simultaneously. Motivated by these observations, we come up with a natural approach: combining various $\ell_p$ gradient projections on a pixel level to achieve a joint adversarial perturbation. Specifically, we learn how to perturb each pixel to maximize the attack performance, while maintaining the overall visual imperceptibility of adversarial examples. Finally, through various experiments with standardized benchmarks, we show that our method outperforms most current strong attacks across state-of-the-art defense mechanisms, while retaining its ability to remain clean visually.
translated by 谷歌翻译
Online Class Incremental learning (CIL) is a challenging setting in Continual Learning (CL), wherein data of new tasks arrive in incoming streams and online learning models need to handle incoming data streams without revisiting previous ones. Existing works used a single centroid adapted with incoming data streams to characterize a class. This approach possibly exposes limitations when the incoming data stream of a class is naturally multimodal. To address this issue, in this work, we first propose an online mixture model learning approach based on nice properties of the mature optimal transport theory (OT-MM). Specifically, the centroids and covariance matrices of the mixture model are adapted incrementally according to incoming data streams. The advantages are two-fold: (i) we can characterize more accurately complex data streams and (ii) by using centroids for each class produced by OT-MM, we can estimate the similarity of an unseen example to each class more reasonably when doing inference. Moreover, to combat the catastrophic forgetting in the CIL scenario, we further propose Dynamic Preservation. Particularly, after performing the dynamic preservation technique across data streams, the latent representations of the classes in the old and new tasks become more condensed themselves and more separate from each other. Together with a contraction feature extractor, this technique facilitates the model in mitigating the catastrophic forgetting. The experimental results on real-world datasets show that our proposed method can significantly outperform the current state-of-the-art baselines.
translated by 谷歌翻译
可解释的机器学习旨在了解复杂的黑盒系统的推理过程,这些系统因缺乏解释性而臭名昭著。一种不断增长的解释方法是通过反事实解释,这超出了为什么系统做出一定决定,以进一步提供有关用户可以采取哪些方法来改变结果的建议。反事实示例必须能够应对黑框分类器的原始预测,同时还满足实用应用程序的各种约束。这些限制存在于一个和另一个之间的权衡处,对现有作品提出了根本的挑战。为此,我们提出了一个基于随机学习的框架,可以有效地平衡反事实权衡。该框架由具有互补角色的一代和特征选择模块组成:前者的目标是建模有效的反事实的分布,而后者则以允许可区分训练和摊销优化的方式执行其他约束。我们证明了我们方法在产生可行和合理的反事实中的有效性,这些反事实比现有方法更多样化,尤其是比具有相同能力的对应物更有效的方式。
translated by 谷歌翻译
计算机系统的程序或功能中存在的软件漏洞是一个严重且至关重要的问题。通常,在由数百或数千个源代码语句组成的程序或功能中,只有很少的语句引起相应的漏洞。当前,在机器学习工具的协助下,专家在功能或程序级别上进行了脆弱性标签。将这种方法扩展到代码语句级别的成本更高和耗时,并且仍然是一个开放的问题。在本文中,我们提出了一种新颖的端到端深度学习方法,以识别与特定功能相关的脆弱性代码语句。受到现实世界中脆弱代码中观察到的特定结构的启发,我们首先利用相互信息来学习一组潜在变量,代表源代码语句与相应函数的漏洞的相关性。然后,我们提出了新颖的群集空间对比学习,以进一步改善与脆弱性相关的代码语句的强大选择过程。 200K+ C/C ++功能的实际数据集的实验结果表明,我们方法的优越性比其他最先进的基线相比。通常,我们的方法在无需监督的环境中在现实世界数据集上运行时,在Baselines上,VCP,VCA和TOP-10 ACC测量的较高性能在3 \%至14 \%之间。我们已发布的源代码样本可在\ href {https://github.com/vannguyennd/livuitcl} {https://github.com/vannguyennd/livuitcl。} {
translated by 谷歌翻译
由于计算机软件的普遍性,软件漏洞(SVS)已成为普遍,严重和至关重要的问题。已经提出了许多基于机器学习的方法来解决软件漏洞检测(SVD)问题。但是,关于SVD仍然存在两个开放和重大问题,就i)学习自动表示以提高SVD的预测性能,ii)解决常规需要专家的标签漏洞数据集的稀缺性数据集。在本文中,我们提出了一种新颖的端到端方法来解决这两个关键问题。我们首先利用自动表示学习,并具有深层域的适应性,以进行软件漏洞检测。然后,我们提出了一个新型的跨域内核分类器,利用最大额度额定原则,以显着改善从标记项目到未标记的项目的软件漏洞的传输学习过程。现实世界软件数据集的实验结果表明,我们提出的方法优于最先进的基准。简而言之,与使用数据集中的第二高方法相比,我们的方法在SVD中获得了更高的F1量化性能,这是SVD中最重要的度量,从1.83%到6.25%。我们已发布的源代码样本可在https://github.com/vannguyennd/dam2p上公开获取
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
药物误解是可能导致对患者造成不可预测后果的风险之一。为了减轻这种风险,我们开发了一个自动系统,该系统可以正确识别移动图像中的药丸的处方。具体来说,我们定义了所谓的药丸匹配任务,该任务试图匹配处方药中药丸所拍摄的药丸的图像。然后,我们提出了PIMA,这是一种使用图神经网络(GNN)和对比度学习来解决目标问题的新方法。特别是,GNN用于学习处方中文本框之间的空间相关性,从而突出显示带有药丸名称的文本框。此外,采用对比度学习来促进药丸名称的文本表示与药丸图像的视觉表示之间的跨模式相似性的建模。我们进行了广泛的实验,并证明PIMA在我们构建的药丸和处方图像的现实数据集上优于基线模型。具体而言,与其他基线相比,PIMA的准确性从19.09%提高到46.95%。我们认为,我们的工作可以为建立新的临床应用并改善药物安全和患者护理提供新的机会。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
可解释的机器学习提供了有关哪些因素推动了黑盒系统的一定预测以及是否信任高风险决策或大规模部署的洞察力。现有方法主要集中于选择解释性输入功能,这些功能遵循本地添加剂或实例方法。加性模型使用启发式采样扰动来依次学习实例特定解释器。因此,该过程效率低下,并且容易受到条件较差的样品的影响。同时,实例技术直接学习本地采样分布,并可以从其他输入中利用全球信息。但是,由于严格依赖预定义的功能,他们只能解释单一级预测并在不同设置上遇到不一致的情况。这项工作利用了这两种方法的优势,并提出了一个全球框架,用于同时学习多个目标类别的本地解释。我们还提出了一种自适应推理策略,以确定特定实例的最佳功能数量。我们的模型解释器极大地超过了忠诚的添加和实例的对应物,而在各种数据集和Black-box模型体系结构上获得了高水平的简洁性。
translated by 谷歌翻译
建模嘈杂的单审峰活动为基础的神经种群动力学建模对于关联神经观察和行为至关重要。最近的一种非电流方法 - 神经数据变压器(NDT) - 在没有明确动力学模型的情况下捕获具有低推理潜伏期的神经动力学方面取得了巨大成功。但是,NDT专注于建模人口活动的时间演变,同时忽略各个神经元之间的丰富协调。在本文中,我们介绍了时空神经数据变压器(STNDT),这是一种基于NDT的架构,该体系结构明确地模拟了跨时和空间中人群中单个神经元的响应,以揭示其潜在的点火率。此外,我们提出了一种对比对比学习损失,该学习损失是根据掩盖建模目标起作用的,以进一步提高预测性能。我们表明,我们的模型在估计四个神经数据集的神经活动方面达到了整体级别的最新性能,这表明其能力捕获跨越不同皮质区域的自主和非自主动力学,同时完全不知道,同时对特定的行为完全不知所措手。此外,STNDT空间注意机制揭示了神经元的始终重要子集,这些基因在推动整个人群的反应中起着至关重要的作用,从而提供了对神经元人群如何执行计算方式的可解释性和关键见解。
translated by 谷歌翻译