As the Internet grows in popularity, more and more classification jobs, such as IoT, finance industry and healthcare field, rely on mobile edge computing to advance machine learning. In the medical industry, however, good diagnostic accuracy necessitates the combination of large amounts of labeled data to train the model, which is difficult and expensive to collect and risks jeopardizing patients' privacy. In this paper, we offer a novel medical diagnostic framework that employs a federated learning platform to ensure patient data privacy by transferring classification algorithms acquired in a labeled domain to a domain with sparse or missing labeled data. Rather than using a generative adversarial network, our framework uses a discriminative model to build multiple classification loss functions with the goal of improving diagnostic accuracy. It also avoids the difficulty of collecting large amounts of labeled data or the high cost of generating large amount of sample data. Experiments on real-world image datasets demonstrates that the suggested adversarial federated transfer learning method is promising for real-world medical diagnosis applications that use image classification.
translated by 谷歌翻译
Through a study of multi-gas mixture datasets, we show that in multi-component spectral analysis, the number of functional or non-functional principal components required to retain the essential information is the same as the number of independent constituents in the mixture set. Due to the mutual in-dependency among different gas molecules, near one-to-one projection from the principal component to the mixture constituent can be established, leading to a significant simplification of spectral quantification. Further, with the knowledge of the molar extinction coefficients of each constituent, a complete principal component set can be extracted from the coefficients directly, and few to none training samples are required for the learning model. Compared to other approaches, the proposed methods provide fast and accurate spectral quantification solutions with a small memory size needed.
translated by 谷歌翻译
节点嵌入方法将网络节点映射到低维矢量的节点,随后可以在各种下游预测任务中使用。近年来,这些方法的普及大大增加了,但是它们对输入数据扰动的稳健性仍然很少了解。在本文中,我们评估了节点嵌入模型的经验鲁棒性,以对随机和对抗中毒攻击。我们的系统评估涵盖了基于跳过,矩阵分解和深神经网络的代表性嵌入方法。我们比较使用网络属性和节点标签计算的边缘添加,删除和重新布线策略。我们还研究了标签均质和异质性对鲁棒性的影响。我们通过在下游节点分类和网络重建性能方面嵌入可视化和定量结果来报告定性结果。我们发现,与网络重建相反,节点分类遭受更高的性能降解,基于程度和基于标签的攻击平均是最大的破坏性攻击。
translated by 谷歌翻译
我们启动差异私有(DP)估计的研究,并访问少量公共数据。为了对D维高斯人进行私人估计,我们假设公共数据来自高斯人,该高斯与私人数据的基础高斯人的总变化距离可能消失了。我们表明,在纯或集中DP的约束下,D+1个公共数据样本足以从私人样本复杂性中删除对私人数据分布的范围参数的任何依赖性,而在没有公共数据的情况下,这是必不可少的。对于分离的高斯混合物,我们假设基本的公共和私人分布是相同的,我们考虑两个设置:(1)当给出独立于维度的公共数据时,可以根据多种方式改善私人样本复杂性混合组件的数量以及对分布范围参数的任何依赖性都可以在近似DP情况下去除; (2)当在维度上给出了一定数量的公共数据线性时,即使在集中的DP下,也可以独立于范围参数使私有样本复杂性使得可以对整体样本复杂性进行其他改进。
translated by 谷歌翻译
In past work on fairness in machine learning, the focus has been on forcing the prediction of classifiers to have similar statistical properties for people of different demographics. To reduce the violation of these properties, fairness methods usually simply rescale the classifier scores, ignoring similarities and dissimilarities between members of different groups. Yet, we hypothesize that such information is relevant in quantifying the unfairness of a given classifier. To validate this hypothesis, we introduce Optimal Transport to Fairness (OTF), a method that quantifies the violation of fairness constraints as the smallest Optimal Transport cost between a probabilistic classifier and any score function that satisfies these constraints. For a flexible class of linear fairness constraints, we construct a practical way to compute OTF as a differentiable fairness regularizer that can be added to any standard classification setting. Experiments show that OTF can be used to achieve an improved trade-off between predictive power and fairness.
translated by 谷歌翻译
虽然在巨大数据上培训的机器学习模型导致了几个领域的断路器,但由于限制数据的访问,他们在隐私敏感域中的部署仍然有限。在私有数据上具有隐私约束的生成模型可以避免此挑战,而是提供对私有数据的间接访问。我们提出DP-Sinkhorn,一种新的最优传输的生成方法,用于从具有差异隐私的私有数据学习数据分布。 DP-Sinkhorn以差别私人方式在模型和数据之间的模型和数据之间最小化陷阱的分歧,将计算上有效的近似值,并在模型和数据之间使用新技术来控制梯度估计的偏差差异的偏差折衷。与现有的培训方法不同,差异私人生成模型主要基于生成的对抗网络,我们不依赖于对抗性目标,这令人惊叹的难以优化,特别是在隐私约束所施加的噪声存在下。因此,DP-Sinkhorn易于训练和部署。通过实验,我们改进了多种图像建模基准的最先进,并显示了差异私有的信息RGB图像综合。项目页面:https://nv-tlabs.github.io/dp-sinkhorn。
translated by 谷歌翻译
无监督的特征学习通常会发现捕获复杂数据结构的低维嵌入。对于专家的任务可获得专家,将其纳入学习的代表可能会导致更高质量的嵌入品。例如,这可以帮助人们将数据嵌入给定的簇数,或者容纳阻止一个人直接在模型上衍生数据分布的噪声,然后可以更有效地学习。然而,缺乏将不同的先前拓扑知识集成到嵌入中的一般工具。虽然最近已经开发了可微分的拓扑层,但可以(重新)形状嵌入预定的拓扑模型,他们对代表学习有两个重要的局限性,我们在本文中解决了这一点。首先,目前建议的拓扑损失未能以自然的方式代表诸如群集和耀斑的简单模型。其次,这些损失忽略了对学习有用的数据中的所有原始结构(例如邻域)信息。我们通过引入一组新的拓扑损失来克服这些限制,并提出其用法作为拓扑正规规范数据嵌入来自然代表预定模型的一种方法。我们包括彻底的综合和实际数据实验,突出了这种方法的有用性和多功能性,其中应用范围从建模高维单胞胎数据进行建模到绘图嵌入。
translated by 谷歌翻译
数据点之间的距离被广泛应用于机器学习。然而,当被噪声干扰,这些距离 - 因而基于他们的模型 - 可能会失去在高维其效用。事实上,噪音小边际效应可能随后迅速积累,从地面实况移经验最近,最远的邻居了。在本文中,我们精确地使用渐近概率表达式表征在嘈杂的高维数据这样的效果。此外,尽管先前已经指出,当距离集中发生邻里查询变得毫无意义且不稳定,这意味着在数据最远和最近的邻居之间的差相对的歧视,我们认为这不一定是当我们分解的情况下在一个地面实况数据 - 这是我们的目标是回收 - 和噪声分量。更具体地说,我们推导出特定的条件下,受噪声影响的实证邻里关系仍可能即使距离集中发生是真实的。我们包括我们的结果的透彻实证检验,以及有趣的实验中,我们的推导相移,其中邻居成为随机的或不被证明是相同的相移,其中常见的降维的方法不佳或井执行用于回收低维重建的密集噪声高维数据。
translated by 谷歌翻译
人类运动预测旨在预测未来的姿势给出了一系列过去的3D骷髅。虽然这个问题最近受到了不断的关注,但它主要是为单身人类而被隔离解决。在本文中,我们在处理执行合作任务时探讨了这个问题,我们寻求预测两个互动者的未来运动给出了他们过去骷髅的两个序列。我们提出了一种新颖的交叉互动注意力,用于利用两个人的历史信息,并学会预测两个姿势序列之间的交叉依赖性。由于没有培训此类交互式情况的数据集,我们收集了Expi(极端姿态互动),这是一个新的基于实验室的人交互数据集,其专业舞者的数据集执行了Lindy-Hop舞蹈动作,其中包含115个序列,其中3D身体带有30k帧的序列。和形状。我们在Expi上彻底评估了我们的交叉交互网络,并表明这两者都在短期和长期预测中,它一直以最优异的方式为单人运动预测的最先进的方法。
translated by 谷歌翻译
变形AutiaceCoder(VAE)是一种强大的深度生成模型,现在广泛地用于通过以无监督方式学习的低维潜在空间来表示高维复杂数据。在原始VAE模型中,输入数据向量独立处理。近年来,一系列论文呈现了VAE的不同扩展来处理顺序数据,这不仅模拟了潜在空间,还可以在数据向量和对应的潜在矢量序列内模拟时间依赖性,依赖于经常性神经网络或状态空间模型。在本文中,我们对这些模型进行了广泛的文献综述。重要的是,我们介绍并讨论了一种称为动态变化自动化器(DVAES)的一般模型,包括这些时间VAE扩展的大的子集。然后我们详细介绍了最近在文献中提出的七种不同的DVAE实例,努力使符号和演示线均匀化,以及将这些模型与现有的经典型号联系起来。我们重新实现了那些七种DVAE模型,我们介绍了在语音分析 - 重新合成任务上进行的实验基准的结果(Pytorch代码被公开可用)。本文得出了广泛讨论了关于DVAE类模型和未来研究指南的重要问题。
translated by 谷歌翻译