Transforming off-the-shelf deep neural network (DNN) models into dynamic multi-exit architectures can achieve inference and transmission efficiency by fragmenting and distributing a large DNN model in edge computing scenarios (e.g., edge devices and cloud servers). In this paper, we propose a novel backdoor attack specifically on the dynamic multi-exit DNN models. Particularly, we inject a backdoor by poisoning one DNN model's shallow hidden layers targeting not this vanilla DNN model but only its dynamically deployed multi-exit architectures. Our backdoored vanilla model behaves normally on performance and cannot be activated even with the correct trigger. However, the backdoor will be activated when the victims acquire this model and transform it into a dynamic multi-exit architecture at their deployment. We conduct extensive experiments to prove the effectiveness of our attack on three structures (ResNet-56, VGG-16, and MobileNet) with four datasets (CIFAR-10, SVHN, GTSRB, and Tiny-ImageNet) and our backdoor is stealthy to evade multiple state-of-the-art backdoor detection or removal methods.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
We summarize our TRECVID 2022 Ad-hoc Video Search (AVS) experiments. Our solution is built with two new techniques, namely Lightweight Attentional Feature Fusion (LAFF) for combining diverse visual / textual features and Bidirectional Negation Learning (BNL) for addressing queries that contain negation cues. In particular, LAFF performs feature fusion at both early and late stages and at both text and video ends to exploit diverse (off-the-shelf) features. Compared to multi-head self attention, LAFF is much more compact yet more effective. Its attentional weights can also be used for selecting fewer features, with the retrieval performance mostly preserved. BNL trains a negation-aware video retrieval model by minimizing a bidirectionally constrained loss per triplet, where a triplet consists of a given training video, its original description and a partially negated description. For video feature extraction, we use pre-trained CLIP, BLIP, BEiT, ResNeXt-101 and irCSN. As for text features, we adopt bag-of-words, word2vec, CLIP and BLIP. Our training data consists of MSR-VTT, TGIF and VATEX that were used in our previous participation. In addition, we automatically caption the V3C1 collection for pre-training. The 2022 edition of the TRECVID benchmark has again been a fruitful participation for the RUCMM team. Our best run, with an infAP of 0.262, is ranked at the second place teamwise.
translated by 谷歌翻译
有关连接车辆的高级研究最近针对将车辆到所有设施(V2X)网络与机器学习(ML)工具(ML)工具和分布式决策制定的集成。联合学习(FL)正在作为训练机器学习(ML)模型(包括V2X网络中的车辆)的新范式出现。与其将培训数据共享和上传到服务器,不如将模型参数(例如,神经网络的权重和偏见)更新,由大量的互连车辆种群应用,充当本地学习者。尽管有这些好处,但现有方法的局限性是集中式优化,它依靠服务器来汇总和融合本地参数,从而导致单个故障点和扩展问题的缺点,以增加V2X网络大小。同时,在智能运输方案中,从车载传感器收集的数据是多余的,这会降低聚合的性能。为了解决这些问题,我们探索了一个分散数据处理的新颖想法,并引入了用于网络内工具的联合学习框架,C-DFL(基于共识的分散联盟学习),以解决有关连接车辆的联合学习并提高学习质量的联盟学习。已经实施了广泛的仿真来评估C-DFL的性能,该表明C-DFL在所有情况下都胜过常规方法的性能。
translated by 谷歌翻译
在过去的几年中,用于计算机视觉的深度学习技术的快速发展极大地促进了医学图像细分的性能(Mediseg)。但是,最近的梅赛格出版物通常集中于主要贡献的演示(例如,网络体系结构,培训策略和损失功能),同时不知不觉地忽略了一些边缘实施细节(也称为“技巧”),导致了潜在的问题,导致了潜在的问题。不公平的实验结果比较。在本文中,我们为不同的模型实施阶段(即,预培训模型,数据预处理,数据增强,模型实施,模型推断和结果后处理)收集了一系列Mediseg技巧,并在实验中探索了有效性这些技巧在一致的基线模型上。与仅关注分割模型的优点和限制分析的纸驱动调查相比,我们的工作提供了大量的可靠实验,并且在技术上更可操作。通过对代表性2D和3D医疗图像数据集的广泛实验结果,我们明确阐明了这些技巧的效果。此外,根据调查的技巧,我们还开源了一个强大的梅德西格存储库,其每个组件都具有插件的优势。我们认为,这项里程碑的工作不仅完成了对最先进的Mediseg方法的全面和互补的调查,而且还提供了解决未来医学图像处理挑战的实用指南,包括但不限于小型数据集学习,课程不平衡学习,多模式学习和领域适应。该代码已在以下网址发布:https://github.com/hust-linyi/mediseg
translated by 谷歌翻译
点云压缩(PCC)是各种3-D应用程序的关键推动器,这是由于点云格式的通用性。理想情况下,3D点云努力描绘了连续的对象/场景表面。实际上,作为一组离散样本,点云是局部断开连接并稀疏分布的。这种稀疏的性质阻碍了在压缩点之间发现局部相关性的发现。通过分形维度的分析,我们提出了一种异质方法,并深入学习有损耗的点云几何压缩。在压缩输入的粗表示的基础层的顶部上,增强层的设计旨在应对具有挑战性的几何残差/详细信息。具体而言,应用基于点的网络将不稳定的本地详细信息转换为位于粗点云上的潜在特征。然后启动了在粗点云上运行的稀疏卷积神经网络。它利用粗糙几何形状的连续性/平滑度来压缩潜在特征,作为增强的位流,极大地使重建质量受益。当此位流不可用时,例如,由于数据包丢失,我们支持具有相同体系结构的跳过模式,该模式直接从粗点云中生成几何细节。对密度和稀疏点云的实验证明了我们的提案实现的最新压缩性能。我们的代码可在https://github.com/interdigitalinc/grasp-net上找到。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
生成的自我监督学习(SSL),尤其是蒙面自动编码器,已成为最令人兴奋的学习范式之一,并且在处理图形数据方面表现出了巨大的潜力。但是,现实世界图总是异质的,它提出了现有方法忽略的三个关键挑战:1)如何捕获复杂的图形结构? 2)如何合并各种节点属性? 3)如何编码不同的节点位置?鉴于此,我们研究了异质图上生成SSL的问题,并提出了HGMAE,这是一种新型的异质图掩盖自动编码器模型,以应对这些挑战。 HGMAE通过两种创新的掩蔽技术和三种独特的培训策略捕获了全面的图形信息。特别是,我们首先使用动态掩模速率开发Metapath掩盖和自适应属性掩蔽,以实现在异质图上有效和稳定的学习。然后,我们设计了几种培训策略,包括基于Metapath的边缘重建,以采用复杂的结构信息,目标属性恢复以结合各种节点属性,以及位置特征预测以编码节点位置信息。广泛的实验表明,HGMAE在多个数据集上的几个任务上均优于对比度和生成的最新基准。
translated by 谷歌翻译
在神经影像分析中,功能磁共振成像(fMRI)可以很好地评估没有明显结构病变的脑疾病的大脑功能变化。到目前为止,大多数基于研究的FMRI研究将功能连接性作为疾病分类的基本特征。但是,功能连接通常是根据感兴趣的预定义区域的时间序列计算的,并忽略了每个体素中包含的详细信息,这可能会导致诊断模型的性能恶化。另一个方法论上的缺点是训练深模型的样本量有限。在这项研究中,我们提出了Brainformer,这是一种用于单个FMRI体积的脑疾病分类的一般混合变压器架构,以充分利用素食细节,并具有足够的数据尺寸和尺寸。脑形形式是通过对每个体素内的局部提示进行建模的3D卷积,并捕获两个全球注意力障碍的遥远地区之间的全球关系。局部和全局线索通过单流模型在脑形中汇总。为了处理多站点数据,我们提出了一个归一化层,以将数据标准化为相同的分布。最后,利用一种基于梯度的定位图可视化方法来定位可能的疾病相关生物标志物。我们在五个独立获取的数据集上评估了脑形形成器,包括Abide,ADNI,MPILMBB,ADHD-200和ECHO,以及自闭症疾病,阿尔茨海默氏病,抑郁症,注意力缺陷多动障碍和头痛疾病。结果证明了脑形对多种脑疾病的诊断的有效性和普遍性。脑形物可以在临床实践中促进基于神经成像的精确诊断,并激励FMRI分析中的未来研究。代码可在以下网址获得:https://github.com/ziyaozhangforpcl/brainformer。
translated by 谷歌翻译