在这项工作中,我们证明了多种语的大规模序列到序列(SEQ2SEQ)模型,该模型是通过Denoising和因果语言建模(CLM)任务的混合物进行训练的,比仅解码器模型更有效地进行了效率的学习者在各种任务上。特别是,我们培训了一个名为Alexa教师模型(Alexatm 20b)的200亿个参数多语言SEQ2SEQ模型,并表明它在1-Shot摘要任务上实现了最先进的(SOTA)性能,超过了更大的540B PALM DOPODER模型。 Alexatm 20b还可以在1-Shot Machine翻译中实现SOTA,尤其是对于低资源语言,几乎所有语言对(阿拉伯语,英语,法语,德语,德语,印地语,意大利语,日语,以及flores-101数据集上的泰卢固语)。我们还显示了零拍设置,AlexATM 20B在SuperGlue和SqueadV2数据集上的表现优于GPT3(175B),并在XNLI,XCOPA,PAWS-X和XWINOGRAD等多语言任务上提供SOTA性能。总体而言,我们的结果为SEQ2SEQ模型提供了一个令人信服的案例,作为大型语言模型(LLM)培训的仅解码器模型的强大替代方法。
translated by 谷歌翻译
我们介绍了一个大规模实验,该实验对编码器进行了预处理,其参数计数范围从700m到9.3b不等,随后蒸馏到较小的型号中,范围为17m-170亿参数,其应用到自然语言理解(NLU)组件(NLU)组件(虚拟助手系统。尽管我们使用70%的口语数据训练,但在对书面形式的跨语性自然语言推论(XNLI)语料库进行评估时,我们的教师模型与XLM-R和MT5相当。我们使用系统中的内域数据对教师模型进行了第二阶段的训练,以提高了3.86%的相对分类,而相对7.01%的插槽填充。我们发现,即使是从我们的2阶段教师模型中提取的170亿参数模型,与仅接受公共数据的2.3B参数老师相比,与2.3B参数老师相比,意图分类更好2.88%,并且7.69%的插槽填充错误率更好(第1阶段),强调了。内域数据对训练的重要性。当使用标记的NLU数据进行离线评估时,我们的17m参数阶段2蒸馏模型的表现分别优于XLM-R碱基(85m Params)和Distillbert(42m Params),分别优于4.23%至6.14%。最后,我们介绍了一个完整的虚拟助手实验平台的结果,在该平台中,我们发现使用经过预训练和蒸馏管道训练的模型超过了从8500万参数教师蒸馏的模型,在自动测量全系统用户不满的自动测量中,从8500万参数教师蒸馏出3.74%-4.91%。
translated by 谷歌翻译
With growing sophistication and volume of cyber attacks combined with complex network structures, it is becoming extremely difficult for security analysts to corroborate evidences to identify multistage campaigns on their network. This work develops HeAT (Heated Alert Triage): given a critical indicator of compromise (IoC), e.g., a severe IDS alert, HeAT produces a HeATed Attack Campaign (HAC) depicting the multistage activities that led up to the critical event. We define the concept of "Alert Episode Heat" to represent the analysts opinion of how much an event contributes to the attack campaign of the critical IoC given their knowledge of the network and security expertise. Leveraging a network-agnostic feature set, HeAT learns the essence of analyst's assessment of "HeAT" for a small set of IoC's, and applies the learned model to extract insightful attack campaigns for IoC's not seen before, even across networks by transferring what have been learned. We demonstrate the capabilities of HeAT with data collected in Collegiate Penetration Testing Competition (CPTC) and through collaboration with a real-world SOC. We developed HeAT-Gain metrics to demonstrate how analysts may assess and benefit from the extracted attack campaigns in comparison to common practices where IP addresses are used to corroborate evidences. Our results demonstrates the practical uses of HeAT by finding campaigns that span across diverse attack stages, remove a significant volume of irrelevant alerts, and achieve coherency to the analyst's original assessments.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.
translated by 谷歌翻译
Self-supervised learning (SSL) aims to produce useful feature representations without access to any human-labeled data annotations. Due to the success of recent SSL methods based on contrastive learning, such as SimCLR, this problem has gained popularity. Most current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective and then discard the learned projection head after training. This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training? In this work, we first perform a systematic study on the behavior of SSL training focusing on the role of the projection head layers. By formulating the projection head as a parametric component for the InfoNCE objective rather than a part of the network, we present an alternative optimization scheme for training contrastive learning based SSL frameworks. Our experimental study on multiple image classification datasets demonstrates the effectiveness of the proposed approach over alternatives in the SSL literature.
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
Self-supervised representation learning follows a paradigm of withholding some part of the data and tasking the network to predict it from the remaining part. Towards this end, masking has emerged as a generic and powerful tool where content is withheld along the sequential dimension, e.g., spatial in images, temporal in audio, and syntactic in language. In this paper, we explore the orthogonal channel dimension for generic data augmentation. The data for each channel is quantized through a non-uniform quantizer, with the quantized value sampled randomly within randomly sampled quantization bins. From another perspective, quantization is analogous to channel-wise masking, as it removes the information within each bin, but preserves the information across bins. We apply the randomized quantization in conjunction with sequential augmentations on self-supervised contrastive models. This generic approach achieves results on par with modality-specific augmentation on vision tasks, and state-of-the-art results on 3D point clouds as well as on audio. We also demonstrate this method to be applicable for augmenting intermediate embeddings in a deep neural network on the comprehensive DABS benchmark which is comprised of various data modalities. Code is availabel at http://www.github.com/microsoft/random_quantize.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译