In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important. Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling. All these labelled samples are then used along with the unlabelled data throughout the training process. In this work, we ask two important questions in this context: (1) does it matter which samples are selected for labelling? (2) does it matter how the labelled samples are used throughout the training process along with the unlabelled data? To answer the first question, we explore a number of unsupervised methods for selecting specific subsets of data to label (without prior knowledge of their labels), with the goal of maximizing representativeness w.r.t. the unlabelled set. Then, for our second line of inquiry, we define a variety of different label injection strategies in the training process. Extensive experiments on four popular datasets, CIFAR-10, CIFAR-100, SVHN, and STL-10, show that unsupervised selection of samples that are more representative of the entire data improves performance by up to ~2% over the existing semi-supervised frameworks such as MixMatch, ReMixMatch, FixMatch and others with random sample labelling. We show that this boost could even increase to 7.5% for very few-labelled scenarios. However, our study shows that gradually injecting the labels throughout the training procedure does not impact the performance considerably versus when all the existing labels are used throughout the entire training.
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译
培训深层神经网络以识别图像识别通常需要大规模的人类注释数据。为了减少深神经溶液对标记数据的依赖,文献中已经提出了最先进的半监督方法。尽管如此,在面部表达识别领域(FER)领域,使用这种半监督方法非常罕见。在本文中,我们介绍了一项关于最近提出的在FER背景下的最先进的半监督学习方法的全面研究。我们对八种半监督学习方法进行了比较研究当使用各种标记的样品时。我们还将这些方法的性能与完全监督的培训进行了比较。我们的研究表明,当培训现有的半监督方法时,每类标记的样本只有250个标记的样品可以产生可比的性能,而在完整标记的数据集中训练的完全监督的方法。为了促进该领域的进一步研究,我们在:https://github.com/shuvenduroy/ssl_fer上公开提供代码
translated by 谷歌翻译
Unsupervised learning-based anomaly detection in latent space has gained importance since discriminating anomalies from normal data becomes difficult in high-dimensional space. Both density estimation and distance-based methods to detect anomalies in latent space have been explored in the past. These methods prove that retaining valuable properties of input data in latent space helps in the better reconstruction of test data. Moreover, real-world sensor data is skewed and non-Gaussian in nature, making mean-based estimators unreliable for skewed data. Again, anomaly detection methods based on reconstruction error rely on Euclidean distance, which does not consider useful correlation information in the feature space and also fails to accurately reconstruct the data when it deviates from the training distribution. In this work, we address the limitations of reconstruction error-based autoencoders and propose a kernelized autoencoder that leverages a robust form of Mahalanobis distance (MD) to measure latent dimension correlation to effectively detect both near and far anomalies. This hybrid loss is aided by the principle of maximizing the mutual information gain between the latent dimension and the high-dimensional prior data space by maximizing the entropy of the latent space while preserving useful correlation information of the original data in the low-dimensional latent space. The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance and simultaneously tries to preserve useful correlation information from the original data space in the latent space by maximizing mutual information between the prior and latent space.
translated by 谷歌翻译
The usage of technologically advanced devices has seen a boom in many domains, including education, automation, and healthcare; with most of the services requiring Internet connectivity. To secure a network, device identification plays key role. In this paper, a device fingerprinting (DFP) model, which is able to distinguish between Internet of Things (IoT) and non-IoT devices, as well as uniquely identify individual devices, has been proposed. Four statistical features have been extracted from the consecutive five device-originated packets, to generate individual device fingerprints. The method has been evaluated using the Random Forest (RF) classifier and different datasets. Experimental results have shown that the proposed method achieves up to 99.8% accuracy in distinguishing between IoT and non-IoT devices and over 97.6% in classifying individual devices. These signify that the proposed method is useful in assisting operators in making their networks more secure and robust to security breaches and unauthorized access.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup. Hair and scalp-related diseases often go unnoticed in the beginning. Sometimes, a patient cannot differentiate between hair loss and regular hair fall. Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests. Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness. Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors. These applications assist clinicians and patients and provide an initial insight into early-stage symptoms. In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis. However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging. 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate. After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.2%, with a validation accuracy of 91.1%. The precision and recall score of alopecia, psoriasis, and folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a dataset of the scalp images for future prospective researchers.
translated by 谷歌翻译
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
translated by 谷歌翻译
Prevailing methods for assessing and comparing generative AIs incentivize responses that serve a hypothetical representative individual. Evaluating models in these terms presumes homogeneous preferences across the population and engenders selection of agglomerative AIs, which fail to represent the diverse range of interests across individuals. We propose an alternative evaluation method that instead prioritizes inclusive AIs, which provably retain the requisite knowledge not only for subsequent response customization to particular segments of the population but also for utility-maximizing decisions.
translated by 谷歌翻译
We explore the use of large language models (LLMs) for zero-shot semantic parsing. Semantic parsing involves mapping natural language utterances to task-specific meaning representations. Language models are generally trained on the publicly available text and code and cannot be expected to directly generalize to domain-specific parsing tasks in a zero-shot setting. In this work, we propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes a semantic parsing problem into a set of abstractive and extractive question-answering (QA) problems, enabling us to leverage the ability of LLMs to zero-shot answer reading comprehension questions. For each utterance, we prompt the LLM with questions corresponding to its top-level intent and a set of slots and use the LLM generations to construct the target meaning representation. We observe that current LLMs fail to detect unanswerable questions; and as a result, cannot handle questions corresponding to missing slots. To address this problem, we fine-tune a language model on public QA datasets using synthetic negative samples. Experimental results show that our QA-based decomposition paired with the fine-tuned LLM can correctly parse ~16% of utterances in the MTOP dataset without requiring any annotated data.
translated by 谷歌翻译