无需进行任何架构更改的微调审计语言模型(LMS)已成为学习下游任务各种语言的规范。但是,对于非语言下游任务,一种常见的做法是使用特定于任务的设计来进行输入,输出层和损失功能。例如,可以通过用图像补丁嵌入层替换单词嵌入层,带有10向输出层的单词图表输出层以及单词预测丢失,将LM微调为MNIST分类器。 - 分别分类损失。出现一个自然的问题:LM微调可以在不更改模型架构或损失功能的情况下解决非语言的下游任务吗?为了回答这一点,我们提出了语言交织的微调(LIFT),并通过对非语言分类和回归任务的套件进行广泛的经验研究来研究其功效和局限性。 Lift不会对模型体系结构或损失功能进行任何更改,它仅依赖于自然语言界面,从而使“使用LMS进行无代码机”学习。我们发现,在各种低维分类和回归任务中,LIFT的性能相对较好,在许多情况下匹配了最佳基线的性能,尤其是对于分类任务。我们报告了有关升力的基本特性的实验结果,包括其电感偏差,样品效率,推断出外推能力,对异常值的鲁棒性和标签噪声以及概括。我们还分析了一些特定于提升的属性/技术,例如,通过适当提示,预测不确定性量化和两阶段微调,上下文感知学习。我们的代码可从https://github.com/uw-madison-lee-lab/languageinterfacefacefacefinetuning获得。
translated by 谷歌翻译
Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown that the accuracy and robustness of unsupervised word translation (UWT) can be improved by making use of visual observations, which are universal representations across languages. In this work, we investigate the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. Specifically, we develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), which leverages visual observations via the shared embedding space of images and texts provided by CLIP models (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the word alignment. Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment. Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.
translated by 谷歌翻译
最近对基于置换的SGD的接地结果进行了证实了广泛观察到的现象:随机排列提供更快的收敛性,而不是更换采样。但是,是随机的最佳状态吗?我们表明这一点在很大程度上取决于我们正在优化的功能,并且最佳和随机排放之间的收敛差距可能因指数而异。我们首先表明,对于具有光滑的第二衍生物的1维强凸功能,与随机相比,存在令人指导的收敛性的排列。但是,对于一般强凸的功能,随机排列是最佳的。最后,我们表明,对于二次,强凸的功能,与随机相比,存在易于构建的置换,从而导致加速会聚。我们的研究结果表明,最佳排列的一般收敛性表征不能捕获各个函数类的细微差别,并且可能错误地表明一个人不能比随机更好。
translated by 谷歌翻译
Psychology research has long explored aspects of human personality such as extroversion, agreeableness and emotional stability. Categorizations like the `Big Five' personality traits are commonly used to assess and diagnose personality types. In this work, we explore the question of whether the perceived personality in language models is exhibited consistently in their language generation. For example, is a language model such as GPT2 likely to respond in a consistent way if asked to go out to a party? We also investigate whether such personality traits can be controlled. We show that when provided different types of contexts (such as personality descriptions, or answers to diagnostic questions about personality traits), language models such as BERT and GPT2 can consistently identify and reflect personality markers in those contexts. This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems. We also contribute a crowd-sourced data-set of personality descriptions of human subjects paired with their `Big Five' personality assessment data, and a data-set of personality descriptions collated from Reddit.
translated by 谷歌翻译
This paper investigates the problem of Named Entity Recognition (NER) for extreme low-resource languages with only a few hundred tagged data samples. NER is a fundamental task in Natural Language Processing (NLP). A critical driver accelerating NER systems' progress is the existence of large-scale language corpora that enable NER systems to achieve outstanding performance in languages such as English and French with abundant training data. However, NER for low-resource languages remains relatively unexplored. In this paper, we introduce Mask Augmented Named Entity Recognition (MANER), a new methodology that leverages the distributional hypothesis of pre-trained masked language models (MLMs) for NER. The <mask> token in pre-trained MLMs encodes valuable semantic contextual information. MANER re-purposes the <mask> token for NER prediction. Specifically, we prepend the <mask> token to every word in a sentence for which we would like to predict the named entity tag. During training, we jointly fine-tune the MLM and a new NER prediction head attached to each <mask> token. We demonstrate that MANER is well-suited for NER in low-resource languages; our experiments show that for 100 languages with as few as 100 training examples, it improves on state-of-the-art methods by up to 48% and by 12% on average on F1 score. We also perform detailed analyses and ablation studies to understand the scenarios that are best-suited to MANER.
translated by 谷歌翻译
A hallmark of human intelligence is the ability to learn new concepts purely from language. Several recent approaches have explored training machine learning models via natural language supervision. However, these approaches fall short in leveraging linguistic quantifiers (such as 'always' or 'rarely') and mimicking humans in compositionally learning complex tasks. Here, we present LaSQuE, a method that can learn zero-shot classifiers from language explanations by using three new strategies - (1) modeling the semantics of linguistic quantifiers in explanations (including exploiting ordinal strength relationships, such as 'always' > 'likely'), (2) aggregating information from multiple explanations using an attention-based mechanism, and (3) model training via curriculum learning. With these strategies, LaSQuE outperforms prior work, showing an absolute gain of up to 7% in generalizing to unseen real-world classification tasks.
translated by 谷歌翻译
Biomedical image segmentation is one of the fastest growing fields which has seen extensive automation through the use of Artificial Intelligence. This has enabled widespread adoption of accurate techniques to expedite the screening and diagnostic processes which would otherwise take several days to finalize. In this paper, we present an end-to-end pipeline to segment lungs from chest X-ray images, training the neural network model on the Japanese Society of Radiological Technology (JSRT) dataset, using UNet to enable faster processing of initial screening for various lung disorders. The pipeline developed can be readily used by medical centers with just the provision of X-Ray images as input. The model will perform the preprocessing, and provide a segmented image as the final output. It is expected that this will drastically reduce the manual effort involved and lead to greater accessibility in resource-constrained locations.
translated by 谷歌翻译
Generating realistic 3D worlds occupied by moving humans has many applications in games, architecture, and synthetic data creation. But generating such scenes is expensive and labor intensive. Recent work generates human poses and motions given a 3D scene. Here, we take the opposite approach and generate 3D indoor scenes given 3D human motion. Such motions can come from archival motion capture or from IMU sensors worn on the body, effectively turning human movement in a "scanner" of the 3D world. Intuitively, human movement indicates the free-space in a room and human contact indicates surfaces or objects that support activities such as sitting, lying or touching. We propose MIME (Mining Interaction and Movement to infer 3D Environments), which is a generative model of indoor scenes that produces furniture layouts that are consistent with the human movement. MIME uses an auto-regressive transformer architecture that takes the already generated objects in the scene as well as the human motion as input, and outputs the next plausible object. To train MIME, we build a dataset by populating the 3D FRONT scene dataset with 3D humans. Our experiments show that MIME produces more diverse and plausible 3D scenes than a recent generative scene method that does not know about human movement. Code and data will be available for research at https://mime.is.tue.mpg.de.
translated by 谷歌翻译
We introduce Action-GPT, a plug and play framework for incorporating Large Language Models (LLMs) into text-based action generation models. Action phrases in current motion capture datasets contain minimal and to-the-point information. By carefully crafting prompts for LLMs, we generate richer and fine-grained descriptions of the action. We show that utilizing these detailed descriptions instead of the original action phrases leads to better alignment of text and motion spaces. Our experiments show qualitative and quantitative improvement in the quality of synthesized motions produced by recent text-to-motion models. Code, pretrained models and sample videos will be made available at https://actiongpt.github.io
translated by 谷歌翻译
We integrate contrastive learning (CL) with adversarial learning to co-optimize the robustness and accuracy of code models. Different from existing works, we show that code obfuscation, a standard code transformation operation, provides novel means to generate complementary `views' of a code that enable us to achieve both robust and accurate code models. To the best of our knowledge, this is the first systematic study to explore and exploit the robustness and accuracy benefits of (multi-view) code obfuscations in code models. Specifically, we first adopt adversarial codes as robustness-promoting views in CL at the self-supervised pre-training phase. This yields improved robustness and transferability for downstream tasks. Next, at the supervised fine-tuning stage, we show that adversarial training with a proper temporally-staggered schedule of adversarial code generation can further improve robustness and accuracy of the pre-trained code model. Built on the above two modules, we develop CLAWSAT, a novel self-supervised learning (SSL) framework for code by integrating $\underline{\textrm{CL}}$ with $\underline{\textrm{a}}$dversarial vie$\underline{\textrm{w}}$s (CLAW) with $\underline{\textrm{s}}$taggered $\underline{\textrm{a}}$dversarial $\underline{\textrm{t}}$raining (SAT). On evaluating three downstream tasks across Python and Java, we show that CLAWSAT consistently yields the best robustness and accuracy ($\textit{e.g.}$ 11$\%$ in robustness and 6$\%$ in accuracy on the code summarization task in Python). We additionally demonstrate the effectiveness of adversarial learning in CLAW by analyzing the characteristics of the loss landscape and interpretability of the pre-trained models.
translated by 谷歌翻译