This paper introduces and presents a new language named MAIL (Malware Analysis Intermediate Language). MAIL is basically used for building malware analysis and detection tools. MAIL provides an abstract representation of an assembly program and hence the ability of a tool to automate malware analysis and detection. By translating binaries compiled for different platforms to MAIL, a tool can achieve platform independence. Each MAIL statement is annotated with patterns that can be used by a tool to optimize malware analysis and detection.
translated by 谷歌翻译
人类活动识别(HAR)是使用有效的机器学习(ML)方法将传感器数据解释为人类运动的问题。 HAR系统依靠来自不受信任的用户的数据,使他们容易受到数据中毒攻击的影响。在中毒攻击中,攻击者操纵传感器读数以污染训练集,从而误导了har以产生错误的结果。本文介绍了针对HAR系统的标签翻转数据中毒攻击的设计,在数据收集阶段,传感器读数的标签发生了恶意更改。由于传感环境中的噪音和不确定性,这种攻击对识别系统构成了严重威胁。此外,当将活动识别模型部署在安全至关重要的应用中时,标记翻转攻击的脆弱性是危险的。本文阐明了如何通过基于智能手机的传感器数据收集应用程序在实践中进行攻击。据我们所知,这是一项较早的研究工作,它通过标签翻转中毒探索了攻击HAR模型。我们实施了提出的攻击并根据以下机器学习算法进行活动识别模型进行测试:多层感知器,决策树,随机森林和XGBoost。最后,我们评估了针对拟议攻击的基于K-Nearest邻居(KNN)的防御机制的有效性。
translated by 谷歌翻译
Migraine is a high-prevalence and disabling neurological disorder. However, information migraine management in real-world settings could be limited to traditional health information sources. In this paper, we (i) verify that there is substantial migraine-related chatter available on social media (Twitter and Reddit), self-reported by migraine sufferers; (ii) develop a platform-independent text classification system for automatically detecting self-reported migraine-related posts, and (iii) conduct analyses of the self-reported posts to assess the utility of social media for studying this problem. We manually annotated 5750 Twitter posts and 302 Reddit posts. Our system achieved an F1 score of 0.90 on Twitter and 0.93 on Reddit. Analysis of information posted by our 'migraine cohort' revealed the presence of a plethora of relevant information about migraine therapies and patient sentiments associated with them. Our study forms the foundation for conducting an in-depth analysis of migraine-related information using social media data.
translated by 谷歌翻译
Handwritten character recognition is a hot topic for research nowadays. If we can convert a handwritten piece of paper into a text-searchable document using the Optical Character Recognition (OCR) technique, we can easily understand the content and do not need to read the handwritten document. OCR in the English language is very common, but in the Bengali language, it is very hard to find a good quality OCR application. If we can merge machine learning and deep learning with OCR, it could be a huge contribution to this field. Various researchers have proposed a number of strategies for recognizing Bengali handwritten characters. A lot of ML algorithms and deep neural networks were used in their work, but the explanations of their models are not available. In our work, we have used various machine learning algorithms and CNN to recognize handwritten Bengali digits. We have got acceptable accuracy from some ML models, and CNN has given us great testing accuracy. Grad-CAM was used as an XAI method on our CNN model, which gave us insights into the model and helped us detect the origin of interest for recognizing a digit from an image.
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.
translated by 谷歌翻译
Most cross-device federated learning (FL) studies focus on the model-homogeneous setting where the global server model and local client models are identical. However, such constraint not only excludes low-end clients who would otherwise make unique contributions to model training but also restrains clients from training large models due to on-device resource bottlenecks. In this work, we propose FedRolex, a partial training (PT)-based approach that enables model-heterogeneous FL and can train a global server model larger than the largest client model. At its core, FedRolex employs a rolling sub-model extraction scheme that allows different parts of the global server model to be evenly trained, which mitigates the client drift induced by the inconsistency between individual client models and server model architectures. We show that FedRolex outperforms state-of-the-art PT-based model-heterogeneous FL methods (e.g. Federated Dropout) and reduces the gap between model-heterogeneous and model-homogeneous FL, especially under the large-model large-dataset regime. In addition, we provide theoretical statistical analysis on its advantage over Federated Dropout and evaluate FedRolex on an emulated real-world device distribution to show that FedRolex can enhance the inclusiveness of FL and boost the performance of low-end devices that would otherwise not benefit from FL. Our code is available at https://github.com/MSU-MLSys-Lab/FedRolex.
translated by 谷歌翻译
Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
translated by 谷歌翻译
In this study, we propose a lung nodule detection scheme which fully incorporates the clinic workflow of radiologists. Particularly, we exploit Bi-Directional Maximum intensity projection (MIP) images of various thicknesses (i.e., 3, 5 and 10mm) along with a 3D patch of CT scan, consisting of 10 adjacent slices to feed into self-distillation-based Multi-Encoders Network (MEDS-Net). The proposed architecture first condenses 3D patch input to three channels by using a dense block which consists of dense units which effectively examine the nodule presence from 2D axial slices. This condensed information, along with the forward and backward MIP images, is fed to three different encoders to learn the most meaningful representation, which is forwarded into the decoded block at various levels. At the decoder block, we employ a self-distillation mechanism by connecting the distillation block, which contains five lung nodule detectors. It helps to expedite the convergence and improves the learning ability of the proposed architecture. Finally, the proposed scheme reduces the false positives by complementing the main detector with auxiliary detectors. The proposed scheme has been rigorously evaluated on 888 scans of LUNA16 dataset and obtained a CPM score of 93.6\%. The results demonstrate that incorporating of bi-direction MIP images enables MEDS-Net to effectively distinguish nodules from surroundings which help to achieve the sensitivity of 91.5% and 92.8% with false positives rate of 0.25 and 0.5 per scan, respectively.
translated by 谷歌翻译
作为世界上口语最广泛的语言之一,孟加拉国的使用在社交媒体世界中也在增加。讽刺是一种积极的陈述或言论,其基本的负面动机在当今的社交媒体平台中广泛使用。在过去的许多年中,英语的讽刺检测有了显着改善,但是有关孟加拉讽刺检测的情况仍然没有改变。结果,仍然很难识别孟加拉国中的讽刺,缺乏高质量的数据是主要因素。本文提出了Banglasarc,该数据集是专门为孟加拉文本数据讽刺检测的数据集。该数据集包含5112条评论/状态和从各种在线社交平台(例如Facebook,YouTube)以及一些在线博客中收集的内容。由于孟加拉语中分类评论的数据收集数量有限,因此该数据集将有助于确定讽刺的研究,认识到人们的情绪,检测到各种类型的孟加拉语表达式和其他领域。该数据集可在https://www.kaggle.com/datasets/sakibapon/banglasarc上公开获得。
translated by 谷歌翻译