使用量子计算,本文解决了两个科学压迫和日常相关问题,即化学逆转录,这是半导体供应链的药物/材料发现和安全性的重要一步。我们表明,量子长短期内存(QLSTM)是逆转录合成的可行工具。我们使用QLSTM实现了65%的培训准确性,而经典的LSTM可以达到100%。但是,在测试中,我们使用QLSTM实现80%的精度,而经典LSTM仅以70%的精度达到峰值!我们还展示了量子神经网络(QNN)在硬件安全域中的应用,特别是使用一组功率和区域特洛伊木马功能在硬件特洛伊木马(HT)检测中。QNN模型可实现高达97.27%的检测准确性。
translated by 谷歌翻译
Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
translated by 谷歌翻译
Due to the high activation sparsity and use of accumulates (AC) instead of expensive multiply-and-accumulates (MAC), neuromorphic spiking neural networks (SNNs) have emerged as a promising low-power alternative to traditional DNNs for several computer vision (CV) applications. However, most existing SNNs require multiple time steps for acceptable inference accuracy, hindering real-time deployment and increasing spiking activity and, consequently, energy consumption. Recent works proposed direct encoding that directly feeds the analog pixel values in the first layer of the SNN in order to significantly reduce the number of time steps. Although the overhead for the first layer MACs with direct encoding is negligible for deep SNNs and the CV processing is efficient using SNNs, the data transfer between the image sensors and the downstream processing costs significant bandwidth and may dominate the total energy. To mitigate this concern, we propose an in-sensor computing hardware-software co-design framework for SNNs targeting image recognition tasks. Our approach reduces the bandwidth between sensing and processing by 12-96x and the resulting total energy by 2.32x compared to traditional CV processing, with a 3.8% reduction in accuracy on ImageNet.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Scene graphs provide a rich, structured representation of a scene by encoding the entities (objects) and their spatial relationships in a graphical format. This representation has proven useful in several tasks, such as question answering, captioning, and even object detection, to name a few. Current approaches take a generation-by-classification approach where the scene graph is generated through labeling of all possible edges between objects in a scene, which adds computational overhead to the approach. This work introduces a generative transformer-based approach to generating scene graphs beyond link prediction. Using two transformer-based components, we first sample a possible scene graph structure from detected objects and their visual features. We then perform predicate classification on the sampled edges to generate the final scene graph. This approach allows us to efficiently generate scene graphs from images with minimal inference overhead. Extensive experiments on the Visual Genome dataset demonstrate the efficiency of the proposed approach. Without bells and whistles, we obtain, on average, 20.7% mean recall (mR@100) across different settings for scene graph generation (SGG), outperforming state-of-the-art SGG approaches while offering competitive performance to unbiased SGG approaches.
translated by 谷歌翻译
Neuroimaging-based prediction methods for intelligence and cognitive abilities have seen a rapid development in literature. Among different neuroimaging modalities, prediction based on functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, but there are limited investigations on the merits of such analysis compared to prediction based on dynamic FC or region level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI data, we propose a deep neural network involving bi-directional long short-term memory (bi-LSTM) approach that also incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient GPU computation framework and applied to predict intelligence scores based on region level fMRI time series as well as dynamic FC. We compare the prediction performance for different intelligence measures based on static FC, dynamic FC, and region level time series acquired from the Adolescent Brain Cognitive Development (ABCD) study involving close to 7000 individuals. Our detailed analysis illustrates that static FC consistently has inferior prediction performance compared to region level time series or dynamic FC for unimodal rest and task fMRI experiments, and in almost all cases using a combination of task and rest features. In addition, the proposed bi-LSTM pipeline based on region level time series identifies several shared and differential important brain regions across task and rest fMRI experiments that drive intelligence prediction. A test-retest analysis of the selected features shows strong reliability across cross-validation folds. Given the large sample size from ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI.
translated by 谷歌翻译
People capture photos and videos to relive and share memories of personal significance. Recently, media montages (stories) have become a popular mode of sharing these memories due to their intuitive and powerful storytelling capabilities. However, creating such montages usually involves a lot of manual searches, clicks, and selections that are time-consuming and cumbersome, adversely affecting user experiences. To alleviate this, we propose task-oriented dialogs for montage creation as a novel interactive tool to seamlessly search, compile, and edit montages from a media collection. To the best of our knowledge, our work is the first to leverage multi-turn conversations for such a challenging application, extending the previous literature studying simple media retrieval tasks. We collect a new dataset C3 (Conversational Content Creation), comprising 10k dialogs conditioned on media montages simulated from a large media collection. We take a simulate-and-paraphrase approach to collect these dialogs to be both cost and time efficient, while drawing from natural language distribution. Our analysis and benchmarking of state-of-the-art language models showcase the multimodal challenges present in the dataset. Lastly, we present a real-world mobile demo application that shows the feasibility of the proposed work in real-world applications. Our code and data will be made publicly available.
translated by 谷歌翻译
Developing safe and useful general-purpose AI systems will require us to make progress on scalable oversight: the problem of supervising systems that potentially outperform us on most skills relevant to the task at hand. Empirical work on this problem is not straightforward, since we do not yet have systems that broadly exceed our abilities. This paper discusses one of the major ways we think about this problem, with a focus on how to turn it into one that can be productively studied empirically. We first present an experimental design centered on choosing tasks for which human specialists succeed but unaided humans and current general AI systems fail. We then present a proof-of-concept experiment following meant to demonstrate a key feature of this experimental design and show its viability with two question-answering tasks: MMLU and time-limited QuALITY. On these tasks, we find that human participants who interact with an unreliable large-language-model dialog assistant through chat -- a trivial baseline strategy for scalable oversight -- substantially outperform both the model alone and their own unaided performance. These results are an encouraging sign that scalable oversight will be tractable to study with present models and bolster recent findings that large language models can productively assist humans with difficult tasks.
translated by 谷歌翻译
有效的自定义合并技术可以积极地修剪特征图的尺寸,从而减少用于资源约束计算机视觉应用程序的推理计算和内存足迹,最近已获得了显着的牵引力。但是,先前的合并作品仅提取激活图的局部环境,从而限制了它们的有效性。相比之下,我们提出了一种新型的非本地自我煽动合并方法,该方法可用作标准合并层的液位替换,例如最大/平均池或跨性别卷积。所提出的自我发项模块使用斑块嵌入,多头自我注意力和空间通道恢复,然后进行乙状结肠激活和指数软效果。这种自我注意的机制有效地聚集了在下采样过程中非本地激活斑之间的依赖性。具有各种卷积神经网络(CNN)体系结构的标准对象分类和检测任务的广泛实验证明了我们所提出的机制优于最先进的(SOTA)合并技术。特别是,我们超过了在Imabilenet-V2上不同变体上的现有合并技术的测试准确性,平均平均为1.2%。随着初始层中激活图的激进下采样(可减少记忆消耗的22倍),与具有ISO-MEMORY足迹的SOTA技术相比,我们的方法的测试准确性提高了1.43%。这使我们的模型可以在内存受限的设备中部署,例如微型控制器(不会失去明显的精度),因为初始激活映射会消耗大量的芯片内存储器,用于复杂视觉任务所需的高分辨率图像。我们提出的合并方法还利用了通道修剪的想法,以进一步减少记忆足迹。
translated by 谷歌翻译