深度学习的最新发展之一是广义的零射击学习(GZSL),旨在识别所见类和看不见的类别的对象,而仅提供了来自可见类的标记示例。在过去的几年中,GZSL抓住了牵引力,并提出了几种模型来解决这个问题。尽管在计算机视觉和自然语言处理等领域进行了大量有关GZSL的研究,但尚未进行此类研究来处理时间序列数据。 GZSL用于应用程序,例如检测ECG和EEG数据的异常,并从传感器,光谱仪和其他设备数据中识别出看不见的类。在这方面,我们提出了一个时间序列-GZSL(LETS -GZSL)模型的潜在嵌入方式,该模型可以解决GZSL的问题用于时间序列分类(TSC)。我们利用基于嵌入式的方法并将其与属性向量相结合以预测最终类标签。我们报告了广泛流行的UCR档案数据集的结果。我们的框架能够在大多数数据集上实现至少55%的谐波平均值,除非看不见的类的数量大于3,否则数据量非常低(小于100个培训示例)。
translated by 谷歌翻译