The success of deep learning heavily relies on large-scale data with comprehensive labels, which is more expensive and time-consuming to fetch in 3D compared to 2D images or natural languages. This promotes the potential of utilizing models pretrained with data more than 3D as teachers for cross-modal knowledge transferring. In this paper, we revisit masked modeling in a unified fashion of knowledge distillation, and we show that foundational Transformers pretrained with 2D images or natural languages can help self-supervised 3D representation learning through training Autoencoders as Cross-Modal Teachers (ACT). The pretrained Transformers are transferred as cross-modal 3D teachers using discrete variational autoencoding self-supervision, during which the Transformers are frozen with prompt tuning for better knowledge inheritance. The latent features encoded by the 3D teachers are used as the target of masked point modeling, wherein the dark knowledge is distilled to the 3D Transformer students as foundational geometry understanding. Our ACT pretrained 3D learner achieves state-of-the-art generalization capacity across various downstream benchmarks, e.g., 88.21% overall accuracy on ScanObjectNN. Codes will be released at https://github.com/RunpeiDong/ACT.
translated by 谷歌翻译
深度学习的成功通常伴随着神经网络深度的增长。但是,传统培训方法仅在最后一层监督神经网络并逐层传播,这导致了优化中间层的困难。最近,已经提出了深层监督,以在深神经网络的中间层中添加辅助分类器。通过通过监督任务损失优化这些辅助分类器,可以将监督直接应用于浅层层。但是,深层监督与众所周知的观察结果冲突,即浅层学习低级特征,而不是任务偏向的高级语义特征。为了解决这个问题,本文提出了一个名为“对比深度监督”的新型培训框架,该框架通过基于增强的对比学习来监督中间层。具有11个模型的九个流行数据集的实验结果证明了其对监督学习,半监督学习和知识蒸馏中一般图像分类,细粒度的图像分类和对象检测的影响。代码已在Github发布。
translated by 谷歌翻译
量化的神经网络通常需要较小的内存占用和较低的计算复杂性,这对于有效部署至关重要。然而,量化不可避免地导致原始网络的分布分发,这通常会降低性能。为了解决这个问题,已经制定了大规模的努力,但大多数现有方法缺乏统计因素,依赖于几种手动配置。在本文中,我们提出了一种自适应映射量化方法,以学习模型内固有的最佳潜在子分布,并用混凝土高斯混合物(GM)平稳地近似。特别地,网络权重被符合GM - 近似的子分布。该子分布随着直接任务客观优化引导的共同调整模式中的重量更新而发展。在各种现代架构上的图像分类和物体检测的充分实验证明了所提出的方法的有效性,泛化性能和可转移性。此外,开发了用于移动CPU的有效部署流,在Octa-Core ARM CPU上实现高达7.46 $ \ Times $推理加速。代码在https://github.com/runpeidong/dgms公开发布。
translated by 谷歌翻译
最前馈卷积神经网络的花费大约为每像素相同的努力。然而,人的视觉识别是眼球运动和空间的关注,我们将在不同区域内对象的几个一瞥之间的相互作用。通过这种观察的启发,我们提出了一个终端到年底可训练多掠影网络(MGNet)旨在解决高计算的挑战和基于反复向下抽样的注意机制缺乏健壮性其中。具体而言,图像的MGNet依次选择任务相关的区域进行对焦,然后自适应地结合为最终的预测所有收集的信息。 MGNet表示反对敌对攻击和常见的腐败与计算量小强阻力。此外,MGNet本质上更可解释的,因为它明确地告诉我们它的重点在每次迭代中。我们对ImageNet100实验表明,经常性下采样关注机制的潜力,以提高单馈方式。例如,MGNet提高平均常用腐败4.76%的准确率只有36.9%,计算成本。此外,虽然基线招致的精度下降至7.6%,MGNet设法保持在相同的PGD攻击强度44.2%的准确度与RESNET-50骨干。我们的代码可在https://github.com/siahuat0727/MGNet。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译
Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work focuses on the former. Previous methods build the network with several modules like CNN, LSTM and Attention. Recent methods combine the Transformer with these modules for better performance. However, it requires tedious optimization skills to train a network composed of mixed modules, making these methods inconvenient to be used in practice. In this paper, we propose to design \emph{pure Transformer-based networks} for deep RL, aiming at providing off-the-shelf backbones for both the online and offline settings. Specifically, the Transformer in Transformer (TIT) backbone is proposed, which cascades two Transformers in a very natural way: the inner one is used to process a single observation, while the outer one is responsible for processing the observation history; combining both is expected to extract spatial-temporal representations for good decision-making. Experiments show that TIT can achieve satisfactory performance in different settings, consistently.
translated by 谷歌翻译
Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译