由于社交媒体的指数增加,重要的是关注其消极方面,因为它可能会划分社会,并将人们煽动暴力。在本文中,我们展示了我们在共享任务逗号@图标上的工作的描述,在那里我们必须对句子进行分类,如果句子是性别偏见或公共偏见的话。这三个可能是在社会中造成重大问题的主要原因。作为团队巨大,我们提出了一种用不同的预磨模的方法,具有注意力和均值的汇集方法。我们能够在孟加拉的0.223实例F1分数获得等级3,在多语言集中排名2,在多语言集中进行0.322个实例F1分数,在MEITEI上排名4,在MEITEI上进行0.129个实例F1分数,并在印地语中进行0.336实例F1分数。这里可以在此处找到源代码和预磨损的模型。
translated by 谷歌翻译
我们介绍了在Fire 2021举行的Dravidian-Codemix共享任务的结果,是代码混合文本中的Dravidian语言的情绪分析轨道。我们描述了任务,其组织和提交的系统。这种共享任务是去年的Dravidian-Codemix共享任务的延续,在火灾2020举行。今年的任务包括在令牌内部和令互相互补级别的代码混合。此外,除了泰米尔和马拉雅拉姆,还介绍。我们收到了22种Tamil-English,15个用于Malayalam-English系统的系统和15个用于Kannada-English。Tamil-English,Malayalam-English和Kannada-English的顶级系统分别获得加权平均F1分,分别为0.711,0.804和0.630分。总之,提交的质量和数量表明,在这种域中的代码混合设置和最先进状态下对Dravidian语言有很大的兴趣仍然需要更多的改进。
translated by 谷歌翻译
随着移动计算和网络技术的快速增长,令人反感的语言在社交网络平台上变得更加普遍。由于本地语言的令人反感语言识别对于中等社交媒体内容至关重要,因此在本文中,我们使用三种Dravidian语言,即Malayalam,Tamil和Kannada,这些语言遭到资源。我们在EACL 2021的Fire 2020- Hasoc-DravidiancodeMix和Dravidianlangtech提供了一个评估任务,旨在提供一个比较不同方法对此问题的框架。本文介绍了数据创建,定义任务,列出参与系统,并讨论各种方法。
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
已经开发了许多方法,以通过消除社交媒体平台的庸俗,令人反感和激烈的评论来监测现代岁月中的消极性传播。然而,存在相对较少的研究,这些研究会收敛于拥抱积极性,加强在线论坛中的支持性和放心内容。因此,我们建议创建英国kannada希望语音数据集,Kanhope并比较几个实验来基准数据集。 DataSet由6,176个用户生成的评论组成,代码混合kannada从YouTube刮擦并手动注释为轴承希望语音或不希望的演讲。此外,我们介绍了DC-BERT4HOPE,一种使用Kanhope的英语翻译进行额外培训的双通道模型,以促进希望语音检测。该方法实现了0.756的加权F1分数,更好的其他模型。从此,卡霍普旨在促进坎卡达的研究,同时促进研究人员,以鼓励,积极和支持的在线内容中务实的方法。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译