Autonomous robotic surgery has advanced significantly based on analysis of visual and temporal cues in surgical workflow, but relational cues from domain knowledge remain under investigation. Complex relations in surgical annotations can be divided into intra- and inter-relations, both valuable to autonomous systems to comprehend surgical workflows. Intra- and inter-relations describe the relevance of various categories within a particular annotation type and the relevance of different annotation types, respectively. This paper aims to systematically investigate the importance of relational cues in surgery. First, we contribute the RLLS12M dataset, a large-scale collection of robotic left lateral sectionectomy (RLLS), by curating 50 videos of 50 patients operated by 5 surgeons and annotating a hierarchical workflow, which consists of 3 inter- and 6 intra-relations, 6 steps, 15 tasks, and 38 activities represented as the triplet of 11 instruments, 8 actions, and 16 objects, totaling 2,113,510 video frames and 12,681,060 annotation entities. Correspondingly, we propose a multi-relation purification hybrid network (MURPHY), which aptly incorporates novel relation modules to augment the feature representation by purifying relational features using the intra- and inter-relations embodied in annotations. The intra-relation module leverages a R-GCN to implant visual features in different graph relations, which are aggregated using a targeted relation purification with affinity information measuring label consistency and feature similarity. The inter-relation module is motivated by attention mechanisms to regularize the influence of relational features based on the hierarchy of annotation types from the domain knowledge. Extensive experimental results on the curated RLLS dataset confirm the effectiveness of our approach, demonstrating that relations matter in surgical workflow analysis.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
translated by 谷歌翻译
Contrastive Language-Image Pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to "[CLASS]" by using similarity between the image and the prompt sentence "a [CONTEXT] of [CLASS]". Based on exhaustive text cues in "[CONTEXT]", CLIP model is aware of different contexts, e.g. background, style, viewpoint, and exhibits unprecedented robustness against a wide range of distribution shifts. However, recent works find further fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks. We conduct an empirical investigation to show fine-tuning will corrupt the context-aware ability of pre-trained CLIP features. To solve this problem, we propose Context-Aware Robust Fine-tuning (CAR-FT). CAR-FT regularizes the model during fine-tuning to capture the context information. Specifically, we use zero-shot prompt weights to get the context distribution contained in the image. By minimizing the Kullback-Leibler Divergence (KLD) between context distributions induced by original/fine-tuned CLIP models, CAR-FT makes the context-aware ability of CLIP inherited into downstream tasks, and achieves both higher In-Distribution (ID) and Out-Of-Distribution (OOD) accuracy. The experimental results show CAR-FT achieves superior robustness on five OOD test datasets of ImageNet, and meanwhile brings accuracy gains on nine downstream tasks. Additionally, CAR-FT surpasses previous Domain Generalization (DG) methods and gets 78.5% averaged accuracy on DomainBed benchmark, building the new state-of-the-art.
translated by 谷歌翻译
The binding problem is one of the fundamental challenges that prevent the artificial neural network (ANNs) from a compositional understanding of the world like human perception, because disentangled and distributed representations of generative factors can interfere and lead to ambiguity when complex data with multiple objects are presented. In this paper, we propose a brain-inspired hybrid neural network (HNN) that introduces temporal binding theory originated from neuroscience into ANNs by integrating spike timing dynamics (via spiking neural networks, SNNs) with reconstructive attention (by ANNs). Spike timing provides an additional dimension for grouping, while reconstructive feedback coordinates the spikes into temporal coherent states. Through iterative interaction of ANN and SNN, the model continuously binds multiple objects at alternative synchronous firing times in the SNN coding space. The effectiveness of the model is evaluated on synthetic datasets of binary images. By visualization and analysis, we demonstrate that the binding is explainable, soft, flexible, and hierarchical. Notably, the model is trained on single object datasets without explicit supervision on grouping, but successfully binds multiple objects on test datasets, showing its compositional generalization capability. Further results show its binding ability in dynamic situations.
translated by 谷歌翻译
准确的车辆类型分类在智能运输系统中起重要作用。对于统治者而言,重要的是要了解道路状况,通常为交通灯控制系统的贡献,以相应地响应以减轻交通拥堵。新技术和全面数据源,例如航空照片和遥感数据,提供了更丰富,高维的信息。同样,由于深度神经网络技术的快速发展,基于图像的车辆分类方法可以在处理数据时更好地提取基本的客观特征。最近,已经提出了几种深度学习模型来解决该问题。但是,基于纯卷积的传统方法对全球信息提取有限制,而复杂的环境(例如恶劣的天气)严重限制了识别能力。为了在复杂环境下提高车辆类型的分类能力,本研究提出了一种新型连接的卷积变压器在变压器神经网络(密度TNT)框架中,通过堆叠密集连接的卷积网络(Densenet)和变压器(TNT)(TNT)(TNT)(TNT )层。部署了三个区域的数据和四个不同的天气条件以评估识别能力。实验发现,即使在严重的雾气天气条件下,我们提出的车辆分类模型的识别能力也很少。
translated by 谷歌翻译
背景:基于其可变的历史视觉记录,对青少年的球形等效物进行定量预测。方法:从2019年10月到2022年3月,我们检查了来自中国成都成都6-20岁的37,586名青少年的双眼未校正视力,轴向长度,角膜曲率和轴向75,172眼。 80 \%样品由训练集和剩余的20 \%组成测试集。时间感知的长期短期记忆被用来定量预测青少年在两年半内的球形当量。结果:球形当量的测试集的平均绝对预测误差为0.273-0.257,如果我们考虑不同的历史记录和不同的预测持续时间,则从0.189-0.160到0.596-0.473。结论:时间感知时间长的短期记忆被应用于不规则采样时间序列中的时间特征,这更符合实际数据的特征,因此具有更高的适用性,并有助于较早地识别近视的进展。总体误差0.273远小于临床上可接受预测的标准,例如0.75。
translated by 谷歌翻译
最新的工业推理引擎(例如FASTRASTRANSFORMER1和TURBOTTRANSFORMER)已验证了半精度的浮点(FP16)和8位整数(INT8)量化可以极大地提高模型推断速度。但是,现有的FP16或INT8量化方法太复杂了,使用不当将大大导致性能损害。在本文中,我们开发了一个工具包,供用户轻松量化其模型以进行推理,其中提出了自适应混合精液(SAMP),以通过混合精确体系结构自动控制量化率,以平衡效率和性能。实验结果表明,我们的SAMP工具包比Pytorch和Fertransformer具有更高的速度,同时确保了所需的性能。此外,SAMP基于模块化设计,将令牌,嵌入,编码器和目标层解耦,该层允许用户处理各种下游任务,并且可以将其无缝集成到Pytorch中。
translated by 谷歌翻译
不平衡的培训数据是医学图像分类的重大挑战。在这项研究中,我们提出了一个新型的渐进式中心三重态(PCCT)框架,以减轻类不平衡问题,尤其是用于诊断稀有疾病的问题,主要是通过仔细设计三重态采样策略和三重态损失形成。具体而言,PCCT框架包括两个连续的阶段。在第一阶段,PCCT通过类平衡的三重损失训练诊断系统,从而使不同类别的分布分布粗糙。在第二阶段,PCCT框架进一步改善了诊断系统,涉及三胞胎损失,从而导致每个类别的分布更紧凑。对于级别平衡的三重态损失,在每个训练迭代中为每个班级平均采样三重态,从而减轻了不平衡的数据问题。对于涉及三胞胎的集体中心损失,每个三重态中的正和负样本被其相应的类中心取代,该中心强制执行靠近类中心的同一类的数据表示。此外,涉及的三胞胎损失涉及的中心损失将扩展到成对的排名损失和四倍体损失,这证明了所提出的框架的概括。广泛的实验支持PCCT框架有效地用于医疗图像分类,并使用不平衡的训练图像。在两个皮肤图像数据集和一个胸部X射线数据集上,建议的方法分别获得了所有类别的平均F1得分86.2、65.2和90.66,以及81.4、63.87和81.92的稀有班级,即可实现最罕见的班级。性能并超越广泛使用的类不平衡问题的方法。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译