This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems. Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time, both critical for making state-of-the-art DRL algorithms practically applicable. DRL-agent learns an optimal policy via a trial-and-error method while interacting with the real-world environment. And it is desirable to minimize the direct interaction of the DRL agent with the real-world power grid due to its safety-critical nature. Additionally, state-of-the-art DRL-based policies are mostly trained using a physics-based grid simulator where dynamic simulation is computationally intensive, lowering the training efficiency. We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model, instead of a real-world power-grid or physics-based simulation, is utilized with the policy learning framework, making the process faster and sample efficient. However, stabilizing model-based DRL is challenging because of the complex system dynamics of large-scale power systems. We solved these issues by incorporating imitation learning to have a warm start in policy learning, reward-shaping, and multi-step surrogate loss. Finally, we achieved 97.5% sample efficiency and 87.7% training efficiency for an application to the IEEE 300-bus test system.
translated by 谷歌翻译
在电压负载下,已被认为是在紧急情况下恢复电力电网电压稳定性的标准方法,但该方案通常越来越大的负载量。加强学习(RL)被采用作为一种有希望的方法来规避问题;但是,RL方法通常不能保证控制系统的安全性。在本文中,我们讨论了一些新的安全R1方法,即限制优化方法和基于障碍功能的方法,可以在紧急事件下安全地恢复电压。该方法是一般的,可以应用于其他安全关键控制问题。进行了39母线IEEE基准测试的数值模拟,以证明所提出的安全RL紧急控制的有效性。
translated by 谷歌翻译
在这项工作中,我们提出了一种基于物理信息引导元进化策略(ES)的新型数据驱动的实时电力系统电压控制方法。主要目标是快速提供自适应控制策略来减轻故障引起的延迟电压恢复(FIDVR)问题。已经为相同或类似的具有挑战性的控制问题制定了强化学习方法,但它们遭受培训效率低下,“角落或看不见”情景缺乏鲁棒性。另一方面,在电力系统中开发了广泛的物理知识,但基于学习的方法很少有利于。为了解决这些挑战,我们介绍了可训练的动作掩模技术,以灵活地将物理知识嵌入到RL模型中,以排除不必要或不利的行动,并达到样本效率,控制性能和鲁棒性的显着改善。此外,我们的方法利用过去学习体验来导出代理梯度,以指导和加速培训勘探过程。与其他最先进的基准方法的IEEE 300座系统和比较案例研究表明了我们方法的有效性和优势。
translated by 谷歌翻译
人类之间的自然对话通常涉及大量的非语言细微差别表达,在整个谈话过程中都在关键时段显示。理解并能够建模这些复杂的互动对于在虚拟世界或物理世界中建立现实的人类代理交流至关重要。随着社会机器人和智能化身的流行和效用,能够在整个对话中实际建模并产生这些动态表达是至关重要的。我们开发了一个概率模型,以在面对面的设置中捕获参与者对之间的相互作用动力学,从而可以编码对话者之间的同步表达式。然后,在预测一个代理的未来动力学时,该相互作用的编码将用于影响生成,以另一个人的当前动态为条件。火焰功能是从包含受试者之间自然对话的视频中提取的,以训练我们的交互模型。我们通过定量指标和定性指标成功地评估了我们提出的模型的功效,并表明它成功捕获了一对相互作用的二元组的动力学。我们还使用从未见过的父母侵入的数据集测试模型,该数据集由二元组之间的两种不同的通信模式组成,并表明我们的模型基于它们的交互动力学在模式之间成功地描绘了这种模式。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译