近年来,Experts(MOE)的混合物已成为一种有前途的深度学习技术,可以将模型能力扩展为万亿多个参数,同时通过稀疏计算降低计算成本。虽然MoE开设了一个非常大的模型的新领域,但由于MOE的动态性质与系统的静态平行性/管道层之间的不匹配,因此其数以千计的GPU的实现受到限制。我们提出了Tutel,这是一种具有动态自适应并行性和管道的高度可扩展的堆栈设计和实现。 TUTEL在运行时提供自适应并行性切换和自适应管道,分别达到1.74倍和2.00倍的单MOE层加速度。我们还提出了一种用于MOE通信速度的新颖的二维层次结构算法,该算法的表现超过了2,048 GPU的先前最先前的最新时间。 Tutel汇总了所有技术,最终在16 GPU和2,048 GPU上分别提供了4.96倍和5.75倍的加速度,分别通过Fairseq:Meta的Facebook AI AI研究序列到序列工具Kit(Tutel(Tutel)(Tutel)(Tutel)(现在由Fairseq部分采用)。 Tutel源代码可在公共场所获得:https://github.com/microsoft/tutel。我们的评估表明,Tutel有效,有效地运行了一个基于现实的MOE模型,名为Swinv2-Moe,建立在Swin Transformer V2上,这是一种最先进的计算机视觉体系结构。在效率方面,Tutel加速了Swinv2-MoE,在FairSeq的训练和推理中分别达到1.55倍和2.11倍的速度。关于有效性,SWINV2-MOE模型在预训练和下游计算机视觉任务(例如可可对象检测)方面都比对应的密度密度模型都达到了卓越的精度,这表明Tutel准备对端到端现实世界模型训练的准备就绪和推理。 Swinv2-Moe在https://github.com/microsoft/swin-transformer中开放。
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Human motion prediction is a complex task as it involves forecasting variables over time on a graph of connected sensors. This is especially true in the case of few-shot learning, where we strive to forecast motion sequences for previously unseen actions based on only a few examples. Despite this, almost all related approaches for few-shot motion prediction do not incorporate the underlying graph, while it is a common component in classical motion prediction. Furthermore, state-of-the-art methods for few-shot motion prediction are restricted to motion tasks with a fixed output space meaning these tasks are all limited to the same sensor graph. In this work, we propose to extend recent works on few-shot time-series forecasting with heterogeneous attributes with graph neural networks to introduce the first few-shot motion approach that explicitly incorporates the spatial graph while also generalizing across motion tasks with heterogeneous sensors. In our experiments on motion tasks with heterogeneous sensors, we demonstrate significant performance improvements with lifts from 10.4% up to 39.3% compared to best state-of-the-art models. Moreover, we show that our model can perform on par with the best approach so far when evaluating on tasks with a fixed output space while maintaining two magnitudes fewer parameters.
translated by 谷歌翻译
Video segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of $\mathbf{0.9535}$ and $\mathbf{0.9636}$ in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.
translated by 谷歌翻译
Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall $\boldsymbol{F\text{-}measure}$ results of $\boldsymbol{0.9622}$ and $\boldsymbol{0.9664}$ over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.
translated by 谷歌翻译
Research on remote sensing image classification significantly impacts essential human routine tasks such as urban planning and agriculture. Nowadays, the rapid advance in technology and the availability of many high-quality remote sensing images create a demand for reliable automation methods. The current paper proposes two novel deep learning-based architectures for image classification purposes, i.e., the Discriminant Deep Image Prior Network and the Discriminant Deep Image Prior Network+, which combine Deep Image Prior and Triplet Networks learning strategies. Experiments conducted over three well-known public remote sensing image datasets achieved state-of-the-art results, evidencing the effectiveness of using deep image priors for remote sensing image classification.
translated by 谷歌翻译
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
translated by 谷歌翻译
We address the problem of integrating data from multiple observational and interventional studies to eventually compute counterfactuals in structural causal models. We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm from the case of a single study to that of multiple ones. The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources. On this basis, it delivers interval approximations to counterfactual results, which collapse to points in the identifiable case. The algorithm is very general, it works on semi-Markovian models with discrete variables and can compute any counterfactual. Moreover, it automatically determines if a problem is feasible (the parameter region being nonempty), which is a necessary step not to yield incorrect results. Systematic numerical experiments show the effectiveness and accuracy of the algorithm, while hinting at the benefits of integrating heterogeneous data to get informative bounds in case of unidentifiability.
translated by 谷歌翻译
Machine learning (ML) is revolutionizing protein structural analysis, including an important subproblem of predicting protein residue contact maps, i.e., which amino-acid residues are in close spatial proximity given the amino-acid sequence of a protein. Despite recent progresses in ML-based protein contact prediction, predicting contacts with a wide range of distances (commonly classified into short-, medium- and long-range contacts) remains a challenge. Here, we propose a multiscale graph neural network (GNN) based approach taking a cue from multiscale physics simulations, in which a standard pipeline involving a recurrent neural network (RNN) is augmented with three GNNs to refine predictive capability for short-, medium- and long-range residue contacts, respectively. Test results on the ProteinNet dataset show improved accuracy for contacts of all ranges using the proposed multiscale RNN+GNN approach over the conventional approach, including the most challenging case of long-range contact prediction.
translated by 谷歌翻译