Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction and planning. As sensors and hardware get improved, there is trending popularity to devise a system that can perform a wide diversity of tasks to fulfill higher-level intelligence. Contemporary approaches resort to either deploying standalone models for individual tasks, or designing a multi-task paradigm with separate heads. These might suffer from accumulative error or negative transfer effect. Instead, we argue that a favorable algorithm framework should be devised and optimized in pursuit of the ultimate goal, i.e. planning of the self-driving-car. Oriented at this goal, we revisit the key components within perception and prediction. We analyze each module and prioritize the tasks hierarchically, such that all these tasks contribute to planning (the goal). To this end, we introduce Unified Autonomous Driving (UniAD), the first comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query design to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven to surpass previous state-of-the-arts by a large margin in all aspects. The full suite of codebase and models would be available to facilitate future research in the community.
translated by 谷歌翻译
图形神经网络(GNN)是用于建模图数据的流行机器学习方法。许多GNN在同质图上表现良好,同时在异质图上表现不佳。最近,一些研究人员将注意力转移到设计GNN,以通过调整消息传递机制或扩大消息传递的接收场来设计GNN。与从模型设计的角度来减轻异性疾病问题的现有作品不同,我们建议通过重新布线结构来从正交角度研究异质图,以减少异质性并使传统GNN的表现更好。通过全面的经验研究和分析,我们验证了重新布线方法的潜力。为了充分利用其潜力,我们提出了一种名为Deep Hertophilly Graph Rewiring(DHGR)的方法,以通过添加同粒子边缘和修剪异质边缘来重新线图。通过比较节点邻居的标签/特征 - 分布的相似性来确定重新布线的详细方法。此外,我们为DHGR设计了可扩展的实现,以确保高效率。 DHRG可以轻松地用作任何GNN的插件模块,即图形预处理步骤,包括同型和异性的GNN,以提高其在节点分类任务上的性能。据我们所知,这是研究图形的第一部重新绘图图形的作品。在11个公共图数据集上进行的广泛实验证明了我们提出的方法的优势。
translated by 谷歌翻译
学习在线推荐模型的关键挑战之一是时间域移动,这会导致培训与测试数据分布之间的不匹配以及域的概括错误。为了克服,我们建议学习一个未来的梯度生成器,该生成器可以预测培训未来数据分配的梯度信息,以便可以对建议模型进行培训,就像我们能够展望其部署的未来一样。与批处理更新相比,我们的理论表明,所提出的算法达到了较小的时间域概括误差,该误差通过梯度变异项在局部遗憾中衡量。我们通过与各种代表性基线进行比较来证明经验优势。
translated by 谷歌翻译
学习率是对神经网络培训有重大影响的最重要的超参数之一。学习率计划在实际实践中广泛使用,以根据预定义的时间表来调整学习率,以进行快速收敛和良好的概括。但是,现有的学习率时间表都是启发式算法,缺乏理论支持。因此,人们通常通过多个临时试验选择学习率计划,并且获得的学习率时间表是最佳的。为了提高获得的次级学习率计划的性能,我们提出了一个通用的学习率计划插件,称为学习率扰动(LEAP),可以将其应用于各种学习率计划,以通过引入一定的扰动来改善模型培训达到学习率。我们发现,通过如此简单而有效的策略,培训处理成倍地利用了平坦的最小值,而不是具有保证收敛的尖锐的最小值,从而提高了更好的概括能力。此外,我们进行了广泛的实验,表明使用LEAP培训可以使用各种学习率计划(包括恒定的学习率)来改善各种数据集对各种深度学习模型的性能。
translated by 谷歌翻译
图形神经网络(GNN)通过汇总邻居的信息在图表中显示出表达性能。最近,一些研究讨论了在图上建模邻域分布的重要性。但是,大多数现有的GNN通过单个统计量(例如,均值,最大,sum)汇总了邻居的特征,该特征失去了与邻居特征分布相关的信息,因此会降低模型性能。在本文中,受统计理论的力矩方法的启发,我们建议用多阶矩对邻居的特征分布进行建模。我们设计了一种新型的GNN模型,即混合矩图神经网络(MM-gnn),其中包括一个多阶矩嵌入(MME)模块和一个基于元素的注意力矩适配器模块。 MM-gnn首先将每个节点的邻居的多阶矩作为签名计算,然后使用基于元素的注意力矩适配器将较大的权重分配给每个节点的重要矩和更新节点表示。我们对15个真实图表(包括社交网络,引文网络和网页网络等)进行了广泛的实验,以评估我们的模型,结果证明了MM-GNN优于现有最先进模型的优势。
translated by 谷歌翻译
图表无处不在地编码许多域中现实世界对象的关系信息。图形生成的目的是从类似于观察到的图形的分布中生成新图形,由于深度学习模型的最新进展,人们的关注越来越大。在本文中,我们对现有的图形生成文献进行了全面综述,从各种新兴方法到其广泛的应用领域。具体来说,我们首先提出了深图生成的问题,并与几个相关的图形学习任务讨论了它的差异。其次,我们根据模型架构将最新方法分为三类,并总结其生成策略。第三,我们介绍了深图生成的三个关键应用领域。最后,我们重点介绍了深图生成的未来研究中的挑战和机遇。
translated by 谷歌翻译
所有物理定律都被描述为状态变量之间的关系,其提供相关系统动态的完整和非冗余描述。然而,尽管计算功率和AI的普及,但识别隐藏状态变量本身的过程已经抵制了自动化。用于建模物理现象的大多数数据驱动方法仍然假设观察到的数据流已经对应于相关状态变量。关键挑战是仅给予高维观察数据,从头开始识别可能的状态变量集。在这里,我们提出了一种新的原理,用于确定观察到的系统可能具有多少状态变量,以及这些变量可以直接来自视频流。我们展示了使用各种物理动态系统的视频录制的这种方法的有效性,从弹性双摆到火焰。如果没有任何相关的物理知识,我们的算法发现观察到的动态的内在尺寸,并识别候选州变量集。我们建议这种方法可以帮助促进对越来越复杂的系统的理解,预测和控制。项目网站是:https://www.cs.columbia.edu/~bchen/nebural-tate-variables
translated by 谷歌翻译
最近,寻找交通状态表示的基本属性比交通信号控制(TSC)的复杂算法更为重要。跑步和排队的车辆考虑到决定是否改变当前阶段;(2)新颖的设计交通运输表示与高级MP的有效压力和有效运行的车辆,即高级交通状态(ATS);(3)通过与当前RL方法的ats组合并生成两个RL算法,“Advanced-Mplight”和“Advanced-Colight”,开发基于RL的算法模板Advanced-Xlight。多个现实世界数据集的综合实验表明:(1)高级MP优于基线方法,可为部署有效可靠;(2)先进的热门和高级雕塑可以实现新的最先进。我们的代码在github上发布。
translated by 谷歌翻译
由于传统方法无法适应动态交通条件,因此增强学习(RL)吸引了更多地关注,帮助解决交通信号控制(TSC)问题。然而,考虑到它们在计算资源方面既不具有比传统方法更具成本效益,都不会部署基于RL的方法,这提出了一个关键的研究问题:如何用较少的训练构建自适应控制器,减少TSC基于RL的方法的复杂性?为了解决这个问题,在本文中,我们(1)创新地将交通流量表示指定为交通网络中的车辆队列的简单但有效的压力,即有效的压力(EP); (2)构建流量信号设置协议,包括TSC的阶段,信号相位数和EP; (3)设计基于传统最大压力(MP)方法的TSC方法,即使用EP捕获交通状态的高效最大压力(高效-MP); (4)开发一般的基于RL的TSC算法模板:EP下有效的Xlight(效率Xlight)。通过对TSC的交通信号设置的多个实际数据集的全面实验,我们证明了与基于传统和RL的建模互补的压力,以设计更好的TSC方法。我们的代码在github上发布。
translated by 谷歌翻译
图形神经网络(GNNS)在具有图形结构数据的各种任务中取得了巨大成功,其中节点分类是必不可少的。无监督的图形域适应(UGDA)显示了其降低节点分类标签成本的实用价值。它利用标记图(即源域)的知识来解决另一个未标记的图形(即目标域)的相同任务。大多数现有的UGDA方法严重依赖于源域中的标记图。它们利用来自源域的标签作为监控信号,并在源图和目标图中共同培训。但是,在一些真实的场景中,由于无法使用或隐私问题,源图无法访问。因此,我们提出了一种名为Source Firect Insuperved Graph域适应(SFUGDA)的新颖情景。在这种情况下,我们可以从源域中杠杆的唯一信息是训练有素的源模型,而不会曝光源图和标签。结果,现有的UGDA方法不再可行。为了解决本实际情况的非琐碎的适应挑战,我们提出了一种模型 - 无话学算法,用于域适应,以充分利用源模型的辨别能力,同时保留目标图上的结构接近度的一致性。我们在理论和经验上证明了所提出的算法的有效性。四个跨域任务的实验结果显示了宏F1得分的一致性改进,高达0.17。
translated by 谷歌翻译