在线知识蒸馏(OKD)通过相互利用教师和学生之间的差异来改善所涉及的模型。它们之间的差距上有几个关键的瓶颈 - 例如,为什么以及何时以及何时损害表现,尤其是对学生的表现?如何量化教师和学生之间的差距? - 接受了有限的正式研究。在本文中,我们提出了可切换的在线知识蒸馏(Switokd),以回答这些问题。 Switokd的核心思想不是专注于测试阶段的准确性差距,而是通过两种模式之间的切换策略来适应训练阶段的差距,即蒸馏差距 - 专家模式(暂停老师,同时暂停教师保持学生学习)和学习模式(重新启动老师)。为了拥有适当的蒸馏差距,我们进一步设计了一个自适应开关阈值,该阈值提供了有关何时切换到学习模式或专家模式的正式标准,从而改善了学生的表现。同时,老师从我们的自适应切换阈值中受益,并基本上与其他在线艺术保持同步。我们进一步将Switokd扩展到具有两个基础拓扑的多个网络。最后,广泛的实验和分析验证了Switokd在最新面前的分类的优点。我们的代码可在https://github.com/hfutqian/switokd上找到。
translated by 谷歌翻译
利用在大规模图像文本对中预先训练的视觉和语言模型(VLM)成为开放式视觉识别的有希望的范式。在这项工作中,我们通过利用视频中自然存在的运动和音频来扩展这种范式。我们提出\ textbf {mov},这是\ textbf {m} ult-imodal \ textbf {o} pen- \ textbf {v} ocabulary视频分类的简单而有效的方法。在MOV中,我们直接使用具有最小修改的预训练VLM的视觉编码器来编码视频,光流和音频频谱图。我们设计一种跨模式融合机制来汇总免费的多模式信息。 Kinetics-700和VGGSOUND的实验表明,引入流量或音频模态会带来预先训练的VLM和现有方法的大量性能增长。具体而言,MOV极大地提高了基础类别的准确性,而在新颖的课程上则更好地概括了。 MOV在UCF和HMDB零摄像视频分类基准上实现了最新结果,从而极大地超过了基于VLMS的传统零摄像方法和最新方法。代码和模型将发布。
translated by 谷歌翻译
声源本地化旨在从观察到的多通道音频寻求所有声源的到达方向(DOA)。对于未知数量来源的实际问题,现有的本地化算法试图预测基于似然的编码(即空间频谱),并采用预先确定的阈值来检测源编号和相应的DOA值。但是,这些基于阈值的算法不稳定,因为它们受到仔细选择阈值的限制。为了解决此问题,我们提出了一种称为ISSL的迭代声源本地化方法,该方法可以迭代地提取每个源的DOA而无需阈值,直到满足终止标准为止。与基于阈值的算法不同,ISSL设计基于二进制分类器的活动源检测器网络,以接受残留的空间频谱并决定是否停止迭代。通过这样做,我们的ISSL可以处理任意数量的来源,甚至超过培训阶段中看到的来源数量。实验结果表明,与现有的基于阈值的算法相比,我们的ISSL在DOA估计和源数检测方面都取得了重大的性能提高。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
这项工作提出了一个名为TEG的自我监督的学习框架,探讨学习视频表示中的时间粒度。在TEG中,我们从视频中抽出一个长剪辑,以及在长夹内部的短夹。然后我们提取密集的时间嵌入品。培训目标由两部分组成:一个细粒度的时间学习目的,以最大化短夹和长剪辑中的相应时间嵌入之间的相似性,以及持续的时间学习目标,以将两个剪辑的全局嵌入在一起。我们的研究揭示了时间粒度与三个主要发现的影响。 1)不同的视频任务可能需要不同时间粒度的特征。 2)有趣的是,广泛认为需要时间感知的一些任务实际上可以通过时间持久的功能来解决。 3)TEG的灵活性对8个视频基准测试产生最先进的结果,在大多数情况下优于监督预训练。
translated by 谷歌翻译
中国对联是一种特殊形式的诗歌,由古代汉语复杂语法组成。由于语义和语法规则的复杂性,合适的对联的创建是一个强大的挑战。本文介绍了基于变压器的序列到序列对联模型。利用锚旗器,该模型能够捕捉古代汉语了解。此外,我们评估了对联语法规则上的字形,拼音和语音标记,以进一步改善模型。
translated by 谷歌翻译
卫星摄像机可以为大型区域提供连续观察,这对于许多遥感应用很重要。然而,由于对象的外观信息不足和缺乏高质量数据集,在卫星视频中实现移动对象检测和跟踪仍然具有挑战性。在本文中,我们首先构建一个具有丰富注释的大型卫星视频数据集,用于移动对象检测和跟踪的任务。该数据集由Jilin-1卫星星座收集,并由47个高质量视频组成,对象检测有1,646,038兴趣的情况和用于对象跟踪的3,711个轨迹。然后,我们引入运动建模基线,以提高检测速率并基于累积多帧差异和鲁棒矩阵完成来减少误报。最后,我们建立了第一个用于在卫星视频中移动对象检测和跟踪的公共基准,并广泛地评估在我们数据集上几种代表方法的性能。还提供了综合实验分析和富有魅力的结论。数据集可在https://github.com/qingyonghu/viso提供。
translated by 谷歌翻译
我们使用无卷积的变压器架构提出了一种从未标记数据学习多式式表示的框架。具体而言,我们的视频音频文本变压器(Vatt)将原始信号作为输入提取,提取丰富的多式化表示,以使各种下游任务受益。我们使用多模式对比损失从头划线训练Vatt端到端,并通过视频动作识别,音频事件分类,图像分类和文本到视频检索的下游任务评估其性能。此外,我们通过共享三种方式之间的重量来研究模型 - 无话的单骨架变压器。我们表明,无卷积VATT优于下游任务中的最先进的Convnet架构。特别是,Vatt的视觉变压器在动力学-400上实现82.1%的高精度82.1%,在动力学-600,72.7%的动力学-700上的72.7%,以及时间的时间,新的记录,在避免受监督的预训练时,新的记录。通过从头划伤训练相同的变压器,转移到图像分类导致图像分类导致78.7%的ImageNet精度为64.7%,尽管视频和图像之间的域间差距,我们的模型概括了我们的模型。 Vatt的音雅音频变压器还通过在没有任何监督的预训练的情况下在Audioset上实现39.4%的地图来设置基于波形的音频事件识别的新记录。 Vatt的源代码是公开的。
translated by 谷歌翻译
Building instance segmentation models that are dataefficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation (e.g., [13,12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.
translated by 谷歌翻译