Speech systems are sensitive to accent variations. This is especially challenging in the Indian context, with an abundance of languages but a dearth of linguistic studies characterising pronunciation variations. The growing number of L2 English speakers in India reinforces the need to study accents and L1-L2 interactions. We investigate the accents of Indian English (IE) speakers and report in detail our observations, both specific and common to all regions. In particular, we observe the phonemic variations and phonotactics occurring in the speakers' native languages and apply this to their English pronunciations. We demonstrate the influence of 18 Indian languages on IE by comparing the native language pronunciations with IE pronunciations obtained jointly from existing literature studies and phonetically annotated speech of 80 speakers. Consequently, we are able to validate the intuitions of Indian language influences on IE pronunciations by justifying pronunciation rules from the perspective of Indian language phonology. We obtain a comprehensive description in terms of universal and region-specific characteristics of IE, which facilitates accent conversion and adaptation of existing ASR and TTS systems to different Indian accents.
translated by 谷歌翻译
Analysis of Indian English (IE) pronunciation variabilities are useful in building systems for Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) synthesis in the Indian context. Typically, these pronunciation variabilities have been explored by comparing IE pronunciation with Received Pronunciation (RP). However, to explore these variabilities, it is required to have labelled pronunciation data at the phonetic level, which is scarce for IE. Moreover, versatility of IE stems from the influence of a large diversity of the speakers' mother tongues and demographic region differences. Prior linguistic works have characterised features of IE variabilities qualitatively by reporting phonetic rules that represent such variations relative to RP. The qualitative descriptions often lack quantitative descriptors and data-driven analysis of diverse IE pronunciation data to characterise IE on the phonetic level. To address these issues, in this work, we consider a corpus, Indic TIMIT, containing a large set of IE varieties from 80 speakers from various regions of India. We present an analysis to obtain the new set of phonetic rules representing IE pronunciation variabilities relative to RP in a data-driven manner. We do this using 15,974 phonetic transcriptions, of which 13,632 were obtained manually in addition to those part of the corpus. Furthermore, we validate the rules obtained from the analysis against the existing phonetic rules to identify the relevance of the obtained phonetic rules and test the efficacy of Grapheme-to-Phoneme (G2P) conversion developed based on the obtained rules considering Phoneme Error Rate (PER) as the metric for performance.
translated by 谷歌翻译
在这项研究中,要求各种印度生物的听众倾听并认识到美国扬声器所说的速度话语。我们识别出一个话语时,我们有三种来自每个听众的回应:1。句子难度评级,2.扬声器难度评级,以及讲话的转录。从这些转录中,计算并用作标准以评估识别和原始句子之间的相似性。本研究中选择的句子分为三组:简单,中和硬,基于此研究它们中的单词的频率。我们观察到句子,扬声器难度评级和行动从易于难以句子的句子增加。我们还使用以下三种自动语音识别(ASR)进行人类语音识别性能,在声学模型(AM)和语言模型(LM)(LM)(LM):ASR1)训练中,录制了印度源头和LM的录音Timit Text,ASR2)我正在使用来自Libli语音语料库的本地美国扬声器和LM的录音,以及ASR3)正在使用来自美国原住民扬声器和LM构建的录音在Libli语音和Timit文本上。我们观察到HSR性能类似于ASR1的性能,而ASR3则实现最佳性能。扬声器诞生明智的分析表明,与少数其他生命神相比,印度听众的扬声器的话语更难以识别
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
A hallmark of human intelligence is the ability to learn new concepts purely from language. Several recent approaches have explored training machine learning models via natural language supervision. However, these approaches fall short in leveraging linguistic quantifiers (such as 'always' or 'rarely') and mimicking humans in compositionally learning complex tasks. Here, we present LaSQuE, a method that can learn zero-shot classifiers from language explanations by using three new strategies - (1) modeling the semantics of linguistic quantifiers in explanations (including exploiting ordinal strength relationships, such as 'always' > 'likely'), (2) aggregating information from multiple explanations using an attention-based mechanism, and (3) model training via curriculum learning. With these strategies, LaSQuE outperforms prior work, showing an absolute gain of up to 7% in generalizing to unseen real-world classification tasks.
translated by 谷歌翻译
With the steady emergence of community question answering (CQA) platforms like Quora, StackExchange, and WikiHow, users now have an unprecedented access to information on various kind of queries and tasks. Moreover, the rapid proliferation and localization of these platforms spanning geographic and linguistic boundaries offer a unique opportunity to study the task requirements and preferences of users in different socio-linguistic groups. In this study, we implement an entity-embedding model trained on a large longitudinal dataset of multi-lingual and task-oriented question-answer pairs to uncover and quantify the (i) prevalence and distribution of various online tasks across linguistic communities, and (ii) emerging and receding trends in task popularity over time in these communities. Our results show that there exists substantial variance in task preference as well as popularity trends across linguistic communities on the platform. Findings from this study will help Q&A platforms better curate and personalize content for non-English users, while also offering valuable insights to businesses looking to target non-English speaking communities online.
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译