Reliability Assessment Commitment (RAC) Optimization is increasingly important in grid operations due to larger shares of renewable generations in the generation mix and increased prediction errors. Independent System Operators (ISOs) also aim at using finer time granularities, longer time horizons, and possibly stochastic formulations for additional economic and reliability benefits. The goal of this paper is to address the computational challenges arising in extending the scope of RAC formulations. It presents RACLEARN that (1) uses Graph Neural Networks (GNN) to predict generator commitments and active line constraints, (2) associates a confidence value to each commitment prediction, (3) selects a subset of the high-confidence predictions, which are (4) repaired for feasibility, and (5) seeds a state-of-the-art optimization algorithm with the feasible predictions and the active constraints. Experimental results on exact RAC formulations used by the Midcontinent Independent System Operator (MISO) and an actual transmission network (8965 transmission lines, 6708 buses, 1890 generators, and 6262 load units) show that the RACLEARN framework can speed up RAC optimization by factors ranging from 2 to 4 with negligible loss in solution quality.
translated by 谷歌翻译
在具有可再生生成的大量份额的网格中,由于负载和发电的波动性增加,运营商将需要其他工具来评估运营风险。正向不确定性传播问题的计算要求必须解决众多安全受限的经济调度(SCED)优化,是这种实时风险评估的主要障碍。本文提出了一个即时风险评估学习框架(Jitralf)作为替代方案。 Jitralf训练风险代理,每天每小时一个,使用机器学习(ML)来预测估计风险所需的数量,而无需明确解决SCED问题。这大大减轻了正向不确定性传播的计算负担,并允许快速,实时的风险估计。本文还提出了一种新颖的,不对称的损失函数,并表明使用不对称损失训练的模型的性能优于使用对称损耗函数的模型。在法国传输系统上评估了Jitralf,以评估运营储量不足的风险,减轻负载的风险和预期的运营成本。
translated by 谷歌翻译
本文研究了如何训练直接近似约束优化问题的最佳解决方案的机器学习模型。这是在约束下的经验风险最小化,这是具有挑战性的,因为培训必须平衡最佳和可行性条件。监督学习方法通​​常通过在大量预处理实例中训练模型来应对这一挑战。本文采用了不同的途径,并提出了原始偶尔学习的想法(PDL),这是一种自我监督的培训方法,不需要一组预处理的实例或用于培训和推理的优化求解器。取而代之的是,PDL模拟了增强拉格朗日方法(ALM)的轨迹,并共同训练原始和双神经网络。作为一种原始的双重方法,PDL使用用于训练原始网络的损失函数中的约束项的实例特定惩罚。实验表明,在一组非线性优化基准上,PDL通常表现出可忽略的约束违规和较小的最佳差距,并且非常接近ALM优化。与现有方法相比,PDL在最佳差距,约束违规和培训时间方面还表现出改善或类似的性能。
translated by 谷歌翻译
本文考虑了最佳功率流(OPF)的优化代理,即近似于OPF的输入/输出关系的机器学习模型。最近的工作重点是表明此类代理可能具有高忠诚。但是,他们的培训需要大量数据,每个实例都需要(离线)解决输入分布样本的OPF。为了满足市场清除应用程序的要求,本文提出了积极的桶装采样(ABS),这是一个新型的活跃学习框架,旨在培训在一个时间限制内培训最佳OPF代理。ABS将输入分布分配到存储桶中,并使用采集函数来确定接下来的何处。它依靠自适应学习率,随着时间的推移会增加和降低。实验结果证明了ABS的好处。
translated by 谷歌翻译
本文调查了差异隐私(DP)与公平性交集中的最新工作。它审查了隐私和公平性可能使目标对准或对比目标的条件,分析了DP如何以及为什么在决策问题和学习任务中加剧偏见和不公平性,并描述了DP系统中出现的公平问题的可用缓解措施。该调查提供了对在公平镜头下部署隐私制度学习或决策任务时,对主要挑战和潜在风险的统一理解。
translated by 谷歌翻译
安全约束的经济调度(SCED)是传输系统运营商(TSO)的基本优化模型,以清除实时能源市场,同时确保电网的可靠操作。在不断增长的运营不确定性的背景下,由于可再生发电机和分布式能源资源的渗透率增加,运营商必须实时监控风险,即,他们必须在负载和可再生生产的各种变化下快速评估系统的行为。遗憾的是,鉴于实时操作的严格约束,系统地解决了每个这样的场景的优化问题。为了克服这种限制,本文提出了学习SCED,即机器学习(ML)模型的优化代理,其可以预测用于以毫秒为单位的最佳解决方案。本文提出了对MISO市场清算优化优化的原则性分析,提出了一种新颖的ML管道,解决了学习SCES解决方案的主要挑战,即负载,可再生产量和生产成本以及组合结构的变化,以及组合结构承诺决定。还提出了一种新的分类 - 然后回归架构,以进一步捕获SCED解决方案的行为。在法国传输系统上报告了数值实验,并展示了该方法在与实时操作兼容的时间范围内生产的能力,精确的优化代理产生相对误差低于0.6 \%$。
translated by 谷歌翻译
学习 - 排名问题旨在排名,以最大限度地曝光与用户查询相关的那些。这种排名系统的理想特性是保证指定项目组之间的一些公平概念。虽然最近在学习排名系统的背景下审议了公平性,但目前的方法无法提供拟议的排名政策的公平性的担保。本文解决了这一差距,并介绍了智能预测,并优化了公平排名(SPOFR),综合优化和学习框架,以便进行公平受限学习。端到端的SPOFR框架包括受约束的优化子模型,并产生保证的排名策略,以满足公平限制,同时允许对公平实用权概况进行精细控制。SPOFR显示出在既定的性能指标方面显着提高当前最先进的公平学习系统。
translated by 谷歌翻译
大规模乘车系统通常将各个请求级别的实时路由与宏观模型预测控制(MPC)优化相结合,用于动态定价和车辆重定位。MPC依赖于需求预测,并优化在更长的时间范围内以补偿路由优化的近视性质。然而,较长的地平线增加了计算复杂性,并迫使MPC以粗糙的空间 - 时间粒度运行,降低其决定的质量。本文通过学习MPC优化来解决这些计算挑战。然后,由此产生的机器学习模型用作优化代理并预测其最佳解决方案。这使得可以在较高的空间 - 时间保真处使用MPC,因为可以解决优化并脱机。实验结果表明,该拟议的方法提高了纽约市数据集具有挑战性的服务质量。
translated by 谷歌翻译
最大化类之间的分离构成了机器学习中众所周知的归纳偏见和许多传统算法的支柱。默认情况下,深网不配备这种电感偏差,因此通过差异优化提出了许多替代解决方案。当前的方法倾向于共同优化分类和分离:将输入与类向量对齐,并角度分离载体。本文提出了一个简单的替代方法:通过在计算SoftMax激活之前添加一个固定的矩阵乘法,将最大分离作为网络中的电感偏差编码。我们方法背后的主要观察结果是,分离不需要优化,可以在训练之前以封闭形式解决并插入网络。我们概述了一种递归方法,以获取由任何数量类别的最大可分离矢量组成的矩阵,可以通过可忽略的工程工作和计算开销添加。尽管它的性质很简单,但这个矩阵乘法提供了真正的影响。我们表明,我们的建议直接提高分类,长尾识别,分布式检测和开放式识别,从CIFAR到Imagenet。我们从经验上发现,最大分离最有效地作为固定偏见。使矩阵可学习不会增加表现。在GitHub上,封闭形式的实现和代码是在GitHub上。
translated by 谷歌翻译
无监督语义分割的任务旨在将像素聚集到语义上有意义的群体中。具体而言,分配给同一群集的像素应共享高级语义属性,例如其对象或零件类别。本文介绍了MaskDistill:基于三个关键想法的无监督语义细分的新颖框架。首先,我们提倡一种数据驱动的策略,以生成对象掩模作为语义分割事先的像素分组。这种方法省略了手工制作的先验,这些先验通常是为特定场景组成而设计的,并限制了竞争框架的适用性。其次,MaskDistill将对象掩盖簇簇以获取伪地真相,以训练初始对象分割模型。第三,我们利用此模型过滤出低质量的对象掩模。这种策略减轻了我们像素分组中的噪声,并导致了我们用来训练最终分割模型的干净掩模集合。通过组合这些组件,我们可以大大优于以前的作品,用于对Pascal(+11%MIOU)和COCO(+4%Mask AP50)进行无监督的语义分割。有趣的是,与现有方法相反,我们的框架不在低级图像提示上,也不限于以对象为中心的数据集。代码和型号将提供。
translated by 谷歌翻译