车辆网络中的传感器数据共享可以显着提高连接自动化车辆环境感知的范围和准确性。已经开发了用于传播和融合传感器数据的不同概念和方案。对于这些方案而言,传感器的测量错误损害了感知质量,并可能导致道路交通事故。具体而言,当传感器的测量误差(也称为测量噪声)尚不清楚并且时间变化时,数据融合过程的性能受到限制,这代表了传感器校准的重大挑战。在本文中,我们考虑了具有车辆到基础设施和车辆到车辆通信的车辆网络中的传感器数据共享和融合。我们提出了一种名为双向反馈噪声估计(BIFNOE)的方法,其中边缘服务器从车辆收集和缓存传感器测量数据。边缘在双动态滑动时间窗口中交替估计噪声和目标,并以低通信成本来增强每辆车的分布式合作环境感测。我们通过模拟评估了应用程序方案中提出的算法和数据传播策略,并表明感知精度平均提高了80%左右,仅12 kbps上行链路和28 kbps的下行链路带宽。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译
多种统计和机器学习方法用于使用机器学习方法在特定道路上建模崩溃频率,通常具有更高的预测准确性。最近,包括堆叠在内的异质集合方法(HEM)已成为更准确和强大的智能技术,并且通常通过提供更可靠和准确的预测来解决模式识别问题。在这项研究中,我们将堆叠的关键下摆方法之一应用于城市和郊区动脉的五个车道段(5T)上的崩溃频率。将堆叠的预测性能与参数统计模型(泊松和负二项式)和三种最先进的机器学习技术(决策树,随机森林和梯度增强)进行了比较,每种技术都被称为基础学习者。通过采用最佳的体重方案通过堆叠结合单个基础学习者,由于规格和预测准确性的差异,各个基础学习者中有偏见的预测问题可以避免。从2013年到2017年收集并集成了包括崩溃,流量和道路清单在内的数据。数据分为培训,验证和测试数据集。统计模型的估计结果表明,除其他因素外,崩溃随着不同类型的车道的密度(每英里数)的增加而增加。各种模型的样本外预测的比较证实了堆叠优于所考虑的替代方法的优越性。从实际的角度来看,堆叠可以提高预测准确性(与仅使用具有特定规范的基本学习者相比)。当系统地应用时,堆叠可以帮助确定更合适的对策。
translated by 谷歌翻译