在边缘计算中,抑制数据大小是执行复杂任务(例如自动驾驶)的机器学习模型的挑战,其中计算资源(速度,内存大小和功率)受到限制。通过将其分解为整数和真实矩阵的乘积,已经引入了矩阵数据的有效损耗压缩。但是,它的优化很困难,因为它需要同时优化整数和真实变量。在本文中,我们通过利用最近开发的黑盒优化(BBO)算法来改善这种优化,并具有用于整数变量的ISING求解器。此外,该算法可用于解决分别在真实和整数变量方面线性和非线性的混合成员编程问题。讨论了ISINS求解器的选择(模拟退火,量子退火和模拟淬火)与BBO算法(BOCS,FMQA及其变化)的策略之间的差异,以进一步开发BBO技术。
translated by 谷歌翻译
在对肺癌患者的放疗治疗期间,需要最小化肿瘤周围健康组织的辐射,这由于呼吸运动和线性加速器系统的潜伏期很难。在拟议的研究中,我们首先使用Lucas-Kanade锥体光流算法来对四个肺癌患者的胸部计算机断层扫描图像进行可变形的图像登记。然后,我们根据先前计算的变形场跟踪靠近肺部肿瘤的三个内部点,并通过使用实时重复学习(RTRL)和梯度剪辑训练的复发神经网络(RNN)预测其位置。呼吸数据非常规规律,在约2.5Hz时采样,并在脊柱方向上包括人工漂移。轨道点的运动幅度范围为12.0mm至22.7mm。最后,我们提出了一种基于线性对应模型和Nadaraya-Watson非线性回归的最初肿瘤图像的恢复和预测3D肿瘤图像的简单方法。与测试集上RNN预测相对应的根平方误差,最大误差和抖动小于使用线性预测和最小平方(LMS)获得的相同性能度量。特别是,与RNN相关的最大预测误差等于1.51mm,比与线性预测和LMS相关的最大误差低16.1%和5.0%。 RTRL的平均预测时间等于119ms,小于400ms标记位置采样时间。预测图像中的肿瘤位置在视觉上似乎是正确的,这通过等于0.955的原始图像和预测图像之间的高平均互相关证实。
translated by 谷歌翻译
在肺放疗期间,可以记录红外反射物体的位置以估计肿瘤位置。但是,放射治疗系统具有阻碍辐射递送精度的机器人控制限制固有的延迟。通过在线学习复发性神经网络(RNN)的预测允许适应非平稳的呼吸信号,但是诸如RTRL和TRUNCED BPTT之类的经典方法分别缓慢且有偏见。这项研究调查了公正的在线复发优化(UORO)预测呼吸运动的能力,并提高肺放疗的安全性。我们使用了9个观察记录,记录了3D外部标记在胸部和健康个体的腹部的3D位置,从73至222s的间隔内呼吸。采样频率为10Hz,在上部方向上,记录的轨迹的幅度从6mm到40mm不等。我们使用经过UORO训练的RNN同时预测每个标记的3D位置,其地平值在0.1s和2.0之间。我们将其性能与经过RTRL,LMS和离线线性回归训练的RNN进行比较。我们为UORO中涉及梯度损失计算的数量提供了封闭形式的表达式,从而使其实施有效。在每个序列的第一分钟内进行训练和交叉验证。在考虑的地平线值和9个序列上,Uoro平均达到了比较算法之间最低的根平方(RMS)误差和最大误差。这些误差分别等于1.3mm和8.8mm,每时间步长的预测时间低于2.8ms(Dell Intel Core i9-9900K 3.60 GHz)。线性回归的Horizo​​n值为0.1和0.2s的RMS误差最低,其次是0.3s和0.5s之间的LMS,而LMS的LMS误差为0.3s和0.5s,而Uoro的地平线值大于0.6s。
translated by 谷歌翻译