深度卷积神经网络(CNNS)通常是复杂的设计,具有许多可学习的参数,用于准确性原因。为了缓解在移动设备上部署它们的昂贵成本,最近的作品使挖掘预定识别架构中的冗余作出了巨大努力。然而,尚未完全研究现代CNN的输入分辨率的冗余,即输入图像的分辨率是固定的。在本文中,我们观察到,用于准确预测给定图像的最小分辨率使用相同的神经网络是不同的。为此,我们提出了一种新颖的动态分辨率网络(DRNET),其中基于每个输入样本动态地确定输入分辨率。其中,利用所需网络共同地探索具有可忽略的计算成本的分辨率预测器。具体地,预测器学习可以保留的最小分辨率,并且甚至超过每个图像的原始识别准确性。在推断过程中,每个输入图像将被调整为其预测的分辨率,以最小化整体计算负担。然后,我们对几个基准网络和数据集进行了广泛的实验。结果表明,我们的DRNET可以嵌入到任何现成的网络架构中,以获得计算复杂性的相当大降低。例如,DR-RESET-50实现了类似的性能,计算减少约34%,同时增加了1.4%的准确度,与原始Resnet-50上的计算减少相比,在ImageNet上的原始resnet-50增加了10%。
translated by 谷歌翻译
以任务为导向的通信,主要是使用基于学习的联合源通道编码(JSCC),旨在通过将与任务相关的信息传输到接收方来设计通信有效的边缘推理系统。但是,只有在不引入任何冗余的情况下传输与任务相关的信息可能会导致由于渠道变化引起的学习鲁棒性问题,而JSCC将源数据直接映射到连续的通道输入符号中会对现有数字通信系统提出兼容性问题。在本文中,我们通过首先调查编码表示形式的信息性与接收到的信息失真的鲁棒性之间的固有权衡解决这两个问题,然后提出一种具有任务调制的导向的通信方案,名为Inveete Task-定向的JSCC(DT-JSCC),其中发射器将功能编码为离散表示形式,并使用数字调制方案将其传输到接收器。在DT-JSCC方案中,我们开发了一个可靠的编码框架,称为强大的信息瓶颈(rib),以改善对信道变化的稳健性,并使用变量近似来得出肋骨目标的可拖动变异上限,以克服克服相互信息的计算棘手性。实验结果表明,所提出的DT-JSCC比具有低通信延迟的基线方法更好的推理性能更好,并且由于施加的肋骨框架而表现出对通道变化的鲁棒性。
translated by 谷歌翻译
我们提出了一个新颖的框架,按需运动产生(ODMO),用于生成现实和多样化的长期3D人体运动序列,该序列仅以具有额外的自定义能力的动作类型为条件。 ODMO在三个公共数据集(HumanAct12,UESTC和MOCAP)上进行评估时,对所有传统运动评估指标的SOTA方法显示了改进。此外,我们提供定性评估和定量指标,这些指标证明了我们框架提供的几种首要的自定义功能,包括模式发现,插值和轨迹自定义。这些功能大大扩大了此类运动产生模型的潜在应用的范围。编码器和解码器体系结构中的创新启用了新颖的按需生成能力:(i)编码器:在低维的潜在空间中利用对比度学习来创建运动序列的层次结构嵌入,不仅是不同动作的代码,类型形成不同的组,但在动作类型中,类似的固有模式(运动样式)聚集在一起的代码,使它们容易发现; (ii)解码器:使用层次解码策略,该策略首先重建运动轨迹,然后用于重建整个运动序列。这样的架构可以有效地控制轨迹控制。我们的代码发布在GitHub页面:https://github.com/roychowdhuryresearch/odmo
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
图形神经网络(GNNS)已经变得越来越流行,并且在许多基于图形的应用程序中实现了令人印象深刻的结果。但是,需要广泛的手动工作和域知识来设计有效的架构,GNN模型的结果具有高差异,与不同的培训设置相比,限制了现有GNN模型的应用。在本文中,我们展示了AutoHensgnn,这是一个框架,用于为图表任务构建有效和强大的模型而没有任何人为干预。 Autohensgnn在kdd杯2020年签名挑战中赢得了第一名,并在最终阶段实现了五个现实生活数据集的最佳等级分数。鉴于任务,AutoHensgnn首先应用一个快速的代理评估,以自动选择有希望的GNN模型的池。然后它构建了一个分层合奏框架:1)我们提出图形自我合奏(GSE),这可以减少重量初始化的方差,有效利用本地和全球街区的信息; 2)基于GSE,使用不同类型的GNN模型的加权集合来有效地学习更多辨别节点表示。为了有效地搜索体系结构和合奏权重,我们提出了AutoHensgnn $ _ {\ text {梯度}} $,它将架构和集合权重视为架构参数,并使用基于梯度的架构搜索来获得最佳配置,而autohensgnn $ {autohensgnn $ { \文本{Adaptive}} $,可以根据模型精度自适应地调整集合重量。关于节点分类的广泛实验,图形分类,边缘预测和KDD杯挑战表明了Autohensgnn的有效性和一般性
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译