We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Automatically estimating 3D skeleton, shape, camera viewpoints, and part articulation from sparse in-the-wild image ensembles is a severely under-constrained and challenging problem. Most prior methods rely on large-scale image datasets, dense temporal correspondence, or human annotations like camera pose, 2D keypoints, and shape templates. We propose Hi-LASSIE, which performs 3D articulated reconstruction from only 20-30 online images in the wild without any user-defined shape or skeleton templates. We follow the recent work of LASSIE that tackles a similar problem setting and make two significant advances. First, instead of relying on a manually annotated 3D skeleton, we automatically estimate a class-specific skeleton from the selected reference image. Second, we improve the shape reconstructions with novel instance-specific optimization strategies that allow reconstructions to faithful fit on each instance while preserving the class-specific priors learned across all images. Experiments on in-the-wild image ensembles show that Hi-LASSIE obtains higher quality state-of-the-art 3D reconstructions despite requiring minimum user input.
translated by 谷歌翻译
大型文本对图像模型在AI的演变中取得了显着的飞跃,从而使图像从给定的文本提示中实现了高质量和多样化的图像合成。但是,这些模型缺乏在给定的参考集中模仿受试者的外观,并在不同情况下合成它们的新颖性。在这项工作中,我们提出了一种新的方法,用于“个性化”文本图像扩散模型(将它们专门针对用户的需求)。仅作为一个主题的几张图像给出,我们将验证的文本对图像模型(图像,尽管我们的方法不限于特定模型),以便它学会了将唯一标识符与该特定主题结合。一旦将受试者嵌入模型的输出域中,就可以使用唯一标识符来合成主题的完全新颖的光真逼真的图像在不同场景中的上下文化。通过利用具有新的自动构基特异性的先前保存损失的语义先验嵌入到模型中,我们的技术可以在参考图像中未出现的不同场景,姿势,视图和照明条件中合成主题。我们将技术应用于几个以前无用的任务,包括主题重新定义,文本指导的视图合成,外观修改和艺术渲染(所有这些都保留了主题的关键特征)。项目页面:https://dreambooth.github.io/
translated by 谷歌翻译
寻找特定任务说明的YouTube用户可能会花费很长时间浏览内容,以寻找与他们需求相匹配的正确视频。创建视觉摘要(视频的删节版本)为观众提供了快速概述,并大大减少了搜索时间。在这项工作中,我们专注于总结教学视频,这​​是视频摘要的探索领域。与通用视频相比,可以将教学视频解析为语义上有意义的细分,这些细分与所示任务的重要步骤相对应。现有的视频摘要数据集依靠手动框架级注释,使其主观且大小有限。为了克服这一点,我们首先通过利用两个关键假设来自动为教学视频语料库生成伪摘要:(i)相关步骤可能会出现在相同任务(任务相关性)的多个视频中,并且(ii)它们更重要。可能由示威者口头描述(跨模式显着)。我们提出了一个教学视频摘要网络,该网络结合了上下文感知的时间视频编码器和段评分变压器。使用伪摘要作为弱监督,我们的网络为仅给出视频和转录语音的教学视频构建了视觉摘要。为了评估我们的模型,我们通过刮擦包含视频演示的Wikihow文章和步骤的视觉描绘,从而收集了高质量的测试集,即Wikihow摘要,从而使我们能够获得地面真实性摘要。我们的表现优于几个基线和这个新基准的最先进的视频摘要模型。
translated by 谷歌翻译
通过手动创建或使用3D扫描工具来创建高质量的铰接3D动物3D模型。因此,从2D图像重建铰接的3D对象的技术至关重要且非常有用。在这项工作中,我们提出了一个实用问题设置,以估算只有几个(10-30)特定动物物种(例如马)的野外图像(Horse)的3D姿势和形状。与依赖于预定义模板形状的现有作品相反,我们不假设任何形式的2D或3D地面真相注释,也不利用任何多视图或时间信息。此外,每个输入图像合奏都可以包含具有不同姿势,背景,照明和纹理的动物实例。我们的主要见解是,与整体动物相比,3D零件的形状要简单得多,并且它们是强大的W.R.T.动物姿势关节。遵循这些见解,我们提出了Lassie,这是一个新颖的优化框架,以最少的用户干预以自我监督的方式发现3D部分。 Lassie背后的关键推动力是使用自我篇幅的深度功能实现2D-3D零件的一致性。与先前的艺术相比,关于Pascal-Part和自我收集的野生动物数据集的实验表明,3D重建以及2D和3D部分的发现都更好。项目页面:chhankyo.github.io/lassie/
translated by 谷歌翻译
培训细节和数据集对于筏等最新的光流模型有多重要?它们会概括吗?为了探索这些问题,而不是开发新的模型,我们将重新访问三个突出的模型,即PWC-NET,IRR-PWC和RAFT,并采用一组常见的现代培训技术和数据集,并观察到显着的性能增长,证明了重要性和普遍性这些培训细节。我们新训练的PWC-NET和IRR-PWC模型显示出惊人的改进,与Sintel和Kitti 2015 Benchmarks相比,最高30%的结果与原始发布的结果相比。他们的表现胜过2015年Kitti的最新流程1D,而推断过程中的速度快3倍。我们新训练的筏子在2015年的Kitti上获得了4.31%的成绩,比写作时所有已发表的光流方法更准确。我们的结果表明,分析光流方法的性能提高时,分离模型,训练技术和数据集的贡献的好处。我们的源代码将公开可用。
translated by 谷歌翻译
We wish to automatically predict the "speediness" of moving objects in videos-whether they move faster, at, or slower than their "natural" speed. The core component in our approach is SpeedNet-a novel deep network trained to detect if a video is playing at normal rate, or if it is sped up. SpeedNet is trained on a large corpus of natural videos in a self-supervised manner, without requiring any manual annotations. We show how this single, binary classification network can be used to detect arbitrary rates of speediness of objects. We demonstrate prediction results by Speed-Net on a wide range of videos containing complex natural motions, and examine the visual cues it utilizes for making those predictions. Importantly, we show that through predicting the speed of videos, the model learns a powerful and meaningful space-time representation that goes beyond simple motion cues. We demonstrate how those learned features can boost the performance of self-supervised action recognition, and can be used for video retrieval. Furthermore, we also apply SpeedNet for generating time-varying, adaptive video speedups, which can allow viewers to watch videos faster, but with less of the jittery, unnatural motions typical to videos that are sped up uniformly.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译