Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Textual entailment recognition is one of the basic natural language understanding(NLU) tasks. Understanding the meaning of sentences is a prerequisite before applying any natural language processing(NLP) techniques to automatically recognize the textual entailment. A text entails a hypothesis if and only if the true value of the hypothesis follows the text. Classical approaches generally utilize the feature value of each word from word embedding to represent the sentences. In this paper, we propose a novel approach to identifying the textual entailment relationship between text and hypothesis, thereby introducing a new semantic feature focusing on empirical threshold-based semantic text representation. We employ an element-wise Manhattan distance vector-based feature that can identify the semantic entailment relationship between the text-hypothesis pair. We carried out several experiments on a benchmark entailment classification(SICK-RTE) dataset. We train several machine learning(ML) algorithms applying both semantic and lexical features to classify the text-hypothesis pair as entailment, neutral, or contradiction. Our empirical sentence representation technique enriches the semantic information of the texts and hypotheses found to be more efficient than the classical ones. In the end, our approach significantly outperforms known methods in understanding the meaning of the sentences for the textual entailment classification task.
translated by 谷歌翻译
由于它们在建模复杂的问题和处理高维数据集的有效性,因此已显示深神网络(DNN)在广泛的应用领域中的传统机器学习算法优于传统的机器学习算法。但是,许多现实生活数据集具有越来越高的维度,其中大量功能可能与手头的任务无关。包含此类功能不仅会引入不必要的噪声,还会提高计算复杂性。此外,由于许多特征之间的非线性和依赖性高,DNN模型往往不可避免地是不透明的,并且被视为黑盒方法,因为它们的内部功能不佳。解释良好的模型可以识别具有统计学意义的特征,并解释其影响模型结果的方式。在本文中,我们提出了一种有效的方法,可以在高维数据集的情况下提高黑框模型的分类任务。为此,我们首先在高维数据集上训练黑框模型,以了解执行分类的嵌入。为了分解黑框模型的内部工作原理并确定TOP-K重要特征,我们采用了不同的探测和扰动技术。然后,我们通过在TOP-K特征空间上通过可解释的替代模型来近似黑框模型的行为。最后,我们从替代模型中得出决策规则和本地解释,以解释个人决策。当在不同数据集上测试,尺寸在50到20,000之间的不同数据集上进行测试时,我们的方法优于最先进的方法,例如TABNET,XGBOOST和基于Shap的可解释性技术。
translated by 谷歌翻译
Numerous machine learning (ML) and deep learning (DL)-based approaches have been proposed to utilize textual data from social media for anti-social behavior analysis like cyberbullying, fake news detection, and identification of hate speech mainly for highly-resourced languages such as English. However, despite having a lot of diversity and millions of native speakers, some languages like Bengali are under-resourced, which is due to a lack of computational resources for natural language processing (NLP). Similar to other languages, Bengali social media contents also include images along with texts (e.g., multimodal memes are posted by embedding short texts into images on Facebook). Therefore, only the textual data is not enough to judge them since images might give extra context to make a proper judgement. This paper is about hate speech detection from multimodal Bengali memes and texts. We prepared the only multimodal hate speech dataset for-a-kind of problem for Bengali, which we use to train state-of-the-art neural architectures (e.g., Bi-LSTM/Conv-LSTM with word embeddings, ConvNets + pre-trained language models, e.g., monolingual Bangla BERT, multilingual BERT-cased/uncased, and XLM-RoBERTa) to jointly analyze textual and visual information for hate speech detection. Conv-LSTM and XLM-RoBERTa models performed best for texts, yielding F1 scores of 0.78 and 0.82, respectively. As of memes, ResNet-152 and DenseNet-161 models yield F1 scores of 0.78 and 0.79, respectively. As for multimodal fusion, XLM-RoBERTa + DenseNet-161 performed the best, yielding an F1 score of 0.83. Our study suggests that text modality is most useful for hate speech detection, while memes are moderately useful.
translated by 谷歌翻译
大自然影响了许多元元素算法。在过去的几十年中,它们的数量一直在升级。这些算法中的大多数试图模仿自然的生物学和物理现象。这项研究集中在花授粉算法上,该算法是几种生物启发的算法之一。建议使用特定的全球授粉和局部授粉策略,建议在限制空间中进行花粉谷物探索和剥削。作为一种“群”元元素算法,其强度在于找到最佳解决方案的附近,而不是识别最小值。这项工作详细介绍了对原始方法的修改。这项研究发现,通过更改“开关概率”的特定值,具有不同尺寸和功能的动态值,结果主要比原始花授粉法改进。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINNs) are gaining popularity as a method for solving differential equations. While being more feasible in some contexts than the classical numerical techniques, PINNs still lack credibility. A remedy for that can be found in Uncertainty Quantification (UQ) which is just beginning to emerge in the context of PINNs. Assessing how well the trained PINN complies with imposed differential equation is the key to tackling uncertainty, yet there is lack of comprehensive methodology for this task. We propose a framework for UQ in Bayesian PINNs (B-PINNs) that incorporates the discrepancy between the B-PINN solution and the unknown true solution. We exploit recent results on error bounds for PINNs on linear dynamical systems and demonstrate the predictive uncertainty on a class of linear ODEs.
translated by 谷歌翻译
We show that for a plane imaged by an endoscope the specular isophotes are concentric circles on the scene plane, which appear as nested ellipses in the image. We show that these ellipses can be detected and used to estimate the plane's normal direction, forming a normal reconstruction method, which we validate on simulated data. In practice, the anatomical surfaces visible in endoscopic images are locally planar. We use our method to show that the surface normal can thus be reconstructed for each of the numerous specularities typically visible on moist tissues. We show results on laparoscopic and colonoscopic images.
translated by 谷歌翻译