Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is one of the most established state estimation methods for mobile platforms. However, when visual tracking fails, VIO algorithms quickly diverge due to rapid error accumulation during inertial data integration. This error is typically modeled as a combination of additive Gaussian noise and a slowly changing bias which evolves as a random walk. In this work, we propose to train a neural network to learn the true bias evolution. We implement and compare two common sequential deep learning architectures: LSTMs and Transformers. Our approach follows from recent learning-based inertial estimators, but, instead of learning a motion model, we target IMU bias explicitly, which allows us to generalize to locomotion patterns unseen in training. We show that our proposed method improves state estimation in visually challenging situations across a wide range of motions by quadrupedal robots, walking humans, and drones. Our experiments show an average 15% reduction in drift rate, with much larger reductions when there is total vision failure. Importantly, we also demonstrate that models trained with one locomotion pattern (human walking) can be applied to another (quadruped robot trotting) without retraining.
translated by 谷歌翻译
准确的本地化是机器人导航系统的核心组成部分。为此,全球导航卫星系统(GNSS)可以在户外提供绝对的测量,因此消除了长期漂移。但是,将GNSS数据与其他传感器数据进行融合并不是微不足道的,尤其是当机器人在有和没有天空视图的区域之间移动时。我们提出了一种可靠的方法,该方法将原始GNSS接收器数据与惯性测量以及可选的LIDAR观测值紧密地融合在一起,以进行精确和光滑的移动机器人定位。提出了具有两种类型的GNSS因子的因子图。首先,基于伪龙的因素,该因素允许地球上进行全球定位。其次,基于载体阶段的因素,该因素可以实现高度准确的相对定位,这在对其他感应方式受到挑战时很有用。与传统的差异GNS不同,这种方法不需要与基站的连接。在公共城市驾驶数据集上,我们的方法达到了与最先进的算法相当的精度,该算法将视觉惯性探测器与GNSS数据融合在一起 - 尽管我们的方法不使用相机,但仅使用了惯性和GNSS数据。我们还使用来自汽车的数据以及在森林(例如森林)的环境中移动的四倍的机器人,证明了方法的鲁棒性。全球地球框架中的准确性仍然为1-2 m,而估计的轨迹无不连续性和光滑。我们还展示了如何紧密整合激光雷达测量值。我们认为,这是第一个将原始GNSS观察(而不是修复)与LIDAR融合在一起的系统。
translated by 谷歌翻译
同时本地化和映射(SLAM)正在现实世界应用中部署,但是在许多常见情况下,许多最先进的解决方案仍然在困难。进步的SLAM研究的关键是高质量数据集的可用性以及公平透明的基准测试。为此,我们创建了Hilti-Oxford数据集,以将最新的SLAM系统推向其极限。该数据集面临着各种挑战,从稀疏和常规的建筑工地到17世纪的新古典建筑,并具有细节和弯曲的表面。为了鼓励多模式的大满贯方法,我们设计了一个具有激光雷达,五个相机和IMU(惯性测量单元)的数据收集平台。为了对精度和鲁棒性至关重要的任务进行基准测试量算法,我们实施了一种新颖的地面真相收集方法,使我们的数据集能够以毫米精度准确地测量SLAM姿势错误。为了进一步确保准确性,我们平台的外部设备通过微米精确的扫描仪进行了验证,并使用硬件时间同步在线管理时间校准。我们数据集的多模式和多样性吸引了大量的学术和工业研究人员进入第二版《希尔蒂·斯拉姆挑战赛》,该挑战于2022年6月结束。挑战的结果表明,尽管前三名团队可以实现准确性在某些序列中的2厘米或更高的速度中,性能以更困难的序列下降。
translated by 谷歌翻译
机器人技术中的安全运动规划需要已验证的空间规划,这些空间没有障碍。但是,由于其深度测量值的稀疏性,使用LiDARS获得此类环境表示是具有挑战性的。我们提出了一个学习辅助的3D激光雷达重建框架,该框架借助重叠的摄像头图像来为稀疏的激光雷达深度测量,以生成比单独使用原始liDar测量值可以实现更明确的自由空间的较密集的重建。我们使用带有编码器解码器结构的神经网络来预测密集的深度图像以及使用体积映射系统融合的深度不确定性估计。我们在使用手持式传感设备和腿部机器人捕获的现实世界室外数据集上进行实验。我们使用来自16束束激光雷达映射建筑网络的输入数据,我们的实验表明,通过我们的方法,估计的自由空间的量增加了40%以上。我们还表明,我们在合成数据集通用上训练的方法非常适合现实世界户外场景,而无需进行其他微调。最后,我们演示了运动计划任务如何从这些密集的重建中受益。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
为了实现成功的实地自主权,移动机器人需要自由适应环境的变化。视觉导航系统(如视觉教学和重复(VT&R)通常会假设参考轨迹周围的空间是自由的,但如果环境受阻,则路径跟踪可能会失败,或者机器人可以与先前看不见的障碍物碰撞。在这项工作中,我们为VT&R系统提供了一个局部反应控制器,允许机器人尽管对环境进行物理变化,但是尽管环境变化。我们的控制器使用本地高程映射来计算矢量表示,并输出10 Hz导航的Twist命令。它们组合在Riemannian运动策略(RMP)控制器中,该控制器需要<2 ms以在CPU上运行。我们将我们的控制器与VT&R系统集成在内的ANYMAL COMOT,并在室内杂乱的空间和大规模地下矿井中进行了测试。我们表明,当发生诸如靠近墙壁,交叉门口或穿越狭窄的走廊时,当发生视觉跟踪时,我们的本地反应控制器保持机器人安全。视频:https://youtu.be/g_awnec5awu.
translated by 谷歌翻译
在本文中,我们展示了一个4.5km步行距离的多摄像头惯性数据集作为向较新的大学数据集的扩展。全局快门多摄像机设备与IMU和LIDAR同步。该数据集还提供了六程度的自由(DOF)地理位作为10Hz的LIDAR频率。描述了三个数据收集,并说明了多相机视觉惯性内径测定的示例使用。该扩展数据集包含小型和狭窄的通道,大规模开放空间以及植被区域来测试本地化和映射系统。此外,一些序列存在具有挑战性的情况,例如突然的照明变化,织地表面和侵略性运动。数据集可用于:https://ori-drs.github.io/newer-college-dataset
translated by 谷歌翻译
本文介绍了一种基于来自IMU数据的学习的位移测量的腿机器人的新型概述状态估计。最近的行人跟踪研究表明,可以使用卷积神经网络从惯性数据推断出运动。学习的惯性位移测量可以提高具有挑战性的场景的状态估计,其中腿部内径是不可靠的,例如滑动和可压缩的地形。我们的工作学会从IMU数据估算从IMU数据融合的位移测量,然后与传统的腿部腿部融合。我们的方法大大降低了诸如在视觉中部署的腿部机器人和Lidar被否定的环境(如有雾的下水道或尘土飞扬的地雷)至关重要。我们使用来自几个真正的机器人实验的数据与交叉挑战性地形的几个真正的机器人实验进行了比较了来自EKF和增量固定滞后因子图估计的结果。与传统的运动惯用估计器相比,我们的结果在挑战情景中表明相对姿势误差的减少37%,而无需学习测量。当在视觉降级环境中的视觉系统中使用时,我们还展示了22%的误差减少,例如地下矿井。
translated by 谷歌翻译
我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译