We present a new algorithm for automatically bounding the Taylor remainder series. In the special case of a scalar function $f: \mathbb{R} \mapsto \mathbb{R}$, our algorithm takes as input a reference point $x_0$, trust region $[a, b]$, and integer $k \ge 0$, and returns an interval $I$ such that $f(x) - \sum_{i=0}^k \frac {f^{(i)}(x_0)} {i!} (x - x_0)^i \in I (x - x_0)^{k+1}$ for all $x \in [a, b]$. As in automatic differentiation, the function $f$ is provided to the algorithm in symbolic form, and must be composed of known elementary functions. At a high level, our algorithm has two steps. First, for a variety of commonly-used elementary functions (e.g., $\exp$, $\log$), we derive sharp polynomial upper and lower bounds on the Taylor remainder series. We then recursively combine the bounds for the elementary functions using an interval arithmetic variant of Taylor-mode automatic differentiation. Our algorithm can make efficient use of machine learning hardware accelerators, and we provide an open source implementation in JAX. We then turn our attention to applications. Most notably, we use our new machinery to create the first universal majorization-minimization optimization algorithms: algorithms that iteratively minimize an arbitrary loss using a majorizer that is derived automatically, rather than by hand. Applied to machine learning, this leads to architecture-specific optimizers for training deep networks that converge from any starting point, without hyperparameter tuning. Our experiments show that for some optimization problems, these hyperparameter-free optimizers outperform tuned versions of gradient descent, Adam, and AdaGrad. We also show that our automatically-derived bounds can be used for verified global optimization and numerical integration, and to prove sharper versions of Jensen's inequality.
translated by 谷歌翻译
The world currently offers an abundance of data in multiple domains, from which we can learn reinforcement learning (RL) policies without further interaction with the environment. RL agents learning offline from such data is possible but deploying them while learning might be dangerous in domains where safety is critical. Therefore, it is essential to find a way to estimate how a newly-learned agent will perform if deployed in the target environment before actually deploying it and without the risk of overestimating its true performance. To achieve this, we introduce a framework for safe evaluation of offline learning using approximate high-confidence off-policy evaluation (HCOPE) to estimate the performance of offline policies during learning. In our setting, we assume a source of data, which we split into a train-set, to learn an offline policy, and a test-set, to estimate a lower-bound on the offline policy using off-policy evaluation with bootstrapping. A lower-bound estimate tells us how good a newly-learned target policy would perform before it is deployed in the real environment, and therefore allows us to decide when to deploy our learned policy.
translated by 谷歌翻译
The NASA Astrophysics Data System (ADS) is an essential tool for researchers that allows them to explore the astronomy and astrophysics scientific literature, but it has yet to exploit recent advances in natural language processing. At ADASS 2021, we introduced astroBERT, a machine learning language model tailored to the text used in astronomy papers in ADS. In this work we: - announce the first public release of the astroBERT language model; - show how astroBERT improves over existing public language models on astrophysics specific tasks; - and detail how ADS plans to harness the unique structure of scientific papers, the citation graph and citation context, to further improve astroBERT.
translated by 谷歌翻译
集中式培训(CT)是许多受欢迎的多代理增强学习(MARL)方法的基础,因为它允许代理商快速学习高性能的政策。但是,CT依靠代理人从对特定州对其他代理商的行为的一次性观察中学习。由于MARL代理商在培训期间探索和更新其政策,因此这些观察结果通常会为其他代理商的行为和预期的给定行动回报提供不良的预测。因此,CT方法患有较高的差异和容易出错的估计,从而损害了学习。除非施加了强大的分解限制,否则CT方法还遭受了复杂性爆炸性增长(例如,QMIX的单调奖励函数)。我们通过一个新的半居中的MAL框架来应对这些挑战,该框架执行政策安装的培训和分散的执行。我们的方法是嵌入式增强学习算法(PERLA),是参与者批评的MARL算法的增强工具,它利用了一种新型参数共享协议和策略嵌入方法来维持对其他代理商的行为的估计。我们的理论证明,佩拉大大降低了价值估计的差异。与各种CT方法不同,Perla无缝地采用MARL算法,它可以轻松地与代理数量缩放,而无需限制性分解假设。我们展示了Perla在基准环境中的出色经验表现和有效的缩放,包括Starcraft Micromagement II和Multi-Agent Mujoco
translated by 谷歌翻译
通过一系列联邦举措和命令,美国政府一直在努力确保美国在AI中的领导。这些广泛的战略文件影响了美国空军美国部(DAF)等组织。DAF-MIT AI加速器是DAF和MIT之间的一项计划,以弥合AI研究人员与DAF任务要求之间的差距。DAF-MIT AI加速器支持的几个项目正在开发公共挑战问题,这些问题解决了许多联邦AI研究的重点。这些挑战是通过公开可用的大型AI-Ready数据集,激励开源解决方案,并为可以激发进一步研究的双重使用技术创建需求信号,来针对优先事项。在本文中,我们描述了正在开发的这些公共挑战以及它们的应用如何促进科学进步。
translated by 谷歌翻译
学习协作对于多机构增强学习(MARL)至关重要。以前的作品通过最大化代理行为的相关性来促进协作,该行为的相关性通常以不同形式的相互信息(MI)为特征。但是,我们揭示了次最佳的协作行为,也出现了强烈的相关性,并且简单地最大化MI可以阻碍学习的学习能力。为了解决这个问题,我们提出了一个新颖的MARL框架,称为“渐进式信息协作(PMIC)”,以进行更有效的MI驱动协作。 PMIC使用全球国家和联合行动之间MI测量的新协作标准。基于此标准,PMIC的关键思想是最大程度地提高与优越的协作行为相关的MI,并最大程度地减少与下等方面相关的MI。这两个MI目标通过促进更好的合作,同时避免陷入次级优势,从而扮演互补的角色。与其他算法相比,在各种MARL基准测试的实验表明,PMIC的表现出色。
translated by 谷歌翻译
我们提出了一种自我监督的预培训方法,用于学习手写和印刷历史文档转录的丰富视觉语言表示。监督我们预先调整我们预先培训的编码器表示两种语言的低资源文件转录后,(1)异构手写伊斯兰制稿件图像和(2)早期现代英语印刷文件,我们展现了有意义的认可改善从划痕培训的同一监督模型的准确性,只需30个线图像转录即可训练。我们屏蔽的语言模型式预培训策略,其中模型训练,以便能够识别从同一行中采样的患者的真正蒙面的视觉表示,鼓励学习强大的上下文化语言表示不变于抄写方式和打印噪声横跨文件。
translated by 谷歌翻译
基于像素的控制的学习表示,最近在加固学习中获得了重大关注。已经提出了广泛的方法来实现高效学习,导致类似于完整状态设置中的复杂性。然而,超越仔细策划的像素数据集(以居中作物,适当的照明,清晰的背景等)仍然具有挑战性。在本文中,我们采用更困难的环境,纳入背景干扰者,作为解决这一挑战的第一步。我们提出了一种简单的基线方法,可以学习有意义的表示,没有基于度量的学习,没有数据增强,没有世界模型学习,也没有对比学习。然后,我们分析何时何种以及为什么先前提出的方法可能会失败或减少与此更难设置中的基线相同的表现,以及为什么我们应该仔细考虑扩展在井策良好环境之外的这种方法。我们的研究结果表明,基于奖励密度,问题的规划地平线,任务 - 无关组件等的规划等的粮食基准,对评估算法至关重要。基于这些观察,我们提出了在评估基准任务的算法时考虑不同的指标。我们希望在调查如何最佳地将RL应用于现实世界任务时激励研究人员对重新思考代表学习来激发研究人员。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
奖励成型(RS)是克服稀疏或不信息奖励问题的强大方法(RL)。但是,RS通常依赖于手动设计的成型奖励功能,其构造耗时且容易出错。它还需要与自主学习目标相反的领域知识。我们介绍了增强学习优化塑造算法(ROSA)的增强型,这是一个自动化的RS框架,其中塑造奖励函数是在两个代理之间的新型马尔可夫游戏中构建的。奖励塑料代理(Shaper)使用切换控件来确定在其他代理(控制器)使用这些形状奖励的任务中学习任务的最佳策略,以确定要添加形状奖励及其最佳值的状态。我们证明,Rosa很容易采用现有的RL算法,学会了构建针对任务的塑造奖励功能,从而确保有效地收敛到高性能策略。我们在三个经过精心设计的实验中展示了罗莎(Rosa)在挑战稀疏奖励环境中对最先进的RS算法的优越性能。
translated by 谷歌翻译