We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
研究人员通常会采用数值方法来理解和预测海洋动力学,这是掌握环境现象的关键任务。在地形图很复杂,有关基础过程的知识不完整或应用程序至关重要的情况下,此类方法可能不适合。另一方面,如果观察到海洋动力学,则可以通过最近的机器学习方法来利用它们。在本文中,我们描述了一种数据驱动的方法,可以预测环境变量,例如巴西东南海岸的Santos-Sao Vicente-Bertioga estuarine系统的当前速度和海面高度。我们的模型通过连接最新的序列模型(LSTM和Transformers)以及关系模型(图神经网络)来利用时间和空间归纳偏见,以学习时间特征和空间特征,观察站点之间共享的关系。我们将结果与桑托斯运营预测系统(SOFS)进行比较。实验表明,我们的模型可以实现更好的结果,同时保持灵活性和很少的领域知识依赖性。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Topic modeling is widely used for analytically evaluating large collections of textual data. One of the most popular topic techniques is Latent Dirichlet Allocation (LDA), which is flexible and adaptive, but not optimal for e.g. short texts from various domains. We explore how the state-of-the-art BERTopic algorithm performs on short multi-domain text and find that it generalizes better than LDA in terms of topic coherence and diversity. We further analyze the performance of the HDBSCAN clustering algorithm utilized by BERTopic and find that it classifies a majority of the documents as outliers. This crucial, yet overseen problem excludes too many documents from further analysis. When we replace HDBSCAN with k-Means, we achieve similar performance, but without outliers.
translated by 谷歌翻译
The energy sector is facing rapid changes in the transition towards clean renewable sources. However, the growing share of volatile, fluctuating renewable generation such as wind or solar energy has already led to an increase in power grid congestion and network security concerns. Grid operators mitigate these by modifying either generation or demand (redispatching, curtailment, flexible loads). Unfortunately, redispatching of fossil generators leads to excessive grid operation costs and higher emissions, which is in direct opposition to the decarbonization of the energy sector. In this paper, we propose an AlphaZero-based grid topology optimization agent as a non-costly, carbon-free congestion management alternative. Our experimental evaluation confirms the potential of topology optimization for power grid operation, achieves a reduction of the average amount of required redispatching by 60%, and shows the interoperability with traditional congestion management methods. Our approach also ranked 1st in the WCCI 2022 Learning to Run a Power Network (L2RPN) competition. Based on our findings, we identify and discuss open research problems as well as technical challenges for a productive system on a real power grid.
translated by 谷歌翻译
As a result of the ever increasing complexity of configuring and fine-tuning machine learning models, the field of automated machine learning (AutoML) has emerged over the past decade. However, software implementations like Auto-WEKA and Auto-sklearn typically focus on classical machine learning (ML) tasks such as classification and regression. Our work can be seen as the first attempt at offering a single AutoML framework for most problem settings that fall under the umbrella of multi-target prediction, which includes popular ML settings such as multi-label classification, multivariate regression, multi-task learning, dyadic prediction, matrix completion, and zero-shot learning. Automated problem selection and model configuration are achieved by extending DeepMTP, a general deep learning framework for MTP problem settings, with popular hyperparameter optimization (HPO) methods. Our extensive benchmarking across different datasets and MTP problem settings identifies cases where specific HPO methods outperform others.
translated by 谷歌翻译
未知的非线性动力学通常会限制前馈控制的跟踪性能。本文的目的是开发一个可以使用通用函数近似器来补偿这些未知非线性动力学的前馈控制框架。前馈控制器被参数化为基于物理模型和神经网络的平行组合,在该组合中,两者都共享相同的线性自回旋(AR)动力学。该参数化允许通过Sanathanan-Koerner(SK)迭代进行有效的输出误差优化。在每个Sk-itteration中,神经网络的输出在基于物理模型的子空间中通过基于正交投影的正则化受到惩罚,从而使神经网络仅捕获未建模的动力学,从而产生可解释的模型。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
最近证明利用稀疏网络连接深神经网络中的连续层,可为大型最新模型提供好处。但是,网络连接性在浅网络的学习曲线中也起着重要作用,例如经典限制的玻尔兹曼机器(RBM)。一个基本问题是有效地找到了改善学习曲线的连接模式。最近的原则方法明确将网络连接作为参数,这些参数必须在模型中进行优化,但通常依靠连续功能来表示连接和明确的惩罚。这项工作提出了一种基于网络梯度的想法来找到RBM的最佳连接模式的方法:计算每个可能连接的梯度,给定特定的连接模式,并使用梯度驱动连续连接强度参数又使用确定连接模式。因此,学习RBM参数和学习网络连接是真正共同执行的,尽管学习率不同,并且没有改变目标函数。该方法应用于MNIST数据集,以显示针对样本生成和输入分类的基准任务找到更好的RBM模型。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译