The recent prevalence of pretrained language models (PLMs) has dramatically shifted the paradigm of semantic parsing, where the mapping from natural language utterances to structured logical forms is now formulated as a Seq2Seq task. Despite the promising performance, previous PLM-based approaches often suffer from hallucination problems due to their negligence of the structural information contained in the sentence, which essentially constitutes the key semantics of the logical forms. Furthermore, most works treat PLM as a black box in which the generation process of the target logical form is hidden beneath the decoder modules, which greatly hinders the model's intrinsic interpretability. To address these two issues, we propose to incorporate the current PLMs with a hierarchical decoder network. By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks, namely Semantic Anchor Extraction and Semantic Anchor Alignment, for training the hierarchical decoders and probing the model intermediate representations in a self-adaptive manner alongside the fine-tuning process. We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines. More importantly, by analyzing the intermediate representations of the hierarchical decoders, our approach also makes a huge step toward the intrinsic interpretability of PLMs in the domain of semantic parsing.
translated by 谷歌翻译
Subject to the huge semantic gap between natural and formal languages, neural semantic parsing is typically bottlenecked by its complexity of dealing with both input semantics and output syntax. Recent works have proposed several forms of supplementary supervision but none is generalized across multiple formal languages. This paper proposes a unified intermediate representation (IR) for graph query languages, named GraphQ IR. It has a natural-language-like expression that bridges the semantic gap and formally defined syntax that maintains the graph structure. Therefore, a neural semantic parser can more precisely convert user queries into GraphQ IR, which can be later losslessly compiled into various downstream graph query languages. Extensive experiments on several benchmarks including KQA Pro, Overnight, GrailQA, and MetaQA-Cypher under standard i.i.d., out-of-distribution, and low-resource settings validate GraphQ IR's superiority over the previous state-of-the-arts with a maximum 11% accuracy improvement.
translated by 谷歌翻译
在知识库(复杂KBQA)上回答的复杂问题是具有挑战性的,因为它需要各种组成推理功能,例如多跳推断,属性比较,集合操作。现有的基准有一些缺点,这些缺点限制了复杂的KBQA的发展:1)它们仅提供质量检查对而没有明确的推理过程; 2)问题的多样性或规模很差。为此,我们介绍了KQA Pro,这是一个用于复杂KBQA的数据集,包括〜120k多样化的自然语言问题。我们引入了一种构图和可解释的编程语言KOPL,以表示复杂问题的推理过程。对于每个问题,我们都提供相应的KOPL程序和SPARQL查询,因此KQA Pro可用于KBQA和语义解析任务。实验结果表明,SOTA KBQA方法无法像当前数据集上的KQA Pro上实现有希望的结果,这表明KQA Pro具有挑战性,复杂的KBQA需要进一步的研究工作。我们还将KQA Pro视为用于测试多种推理技能的诊断数据集,对现有模型进行彻底评估,并讨论复杂KBQA的进一步说明。我们的代码和数据集可以从https://github.com/shijx12/kqapro_baselines获得。
translated by 谷歌翻译
To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers $13$ common text generation tasks and their corresponding $83$ datasets and further incorporates $45$ PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement $4$ efficient training strategies and provide $4$ generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox.
translated by 谷歌翻译
The booming development and huge market of micro-videos bring new e-commerce channels for merchants. Currently, more micro-video publishers prefer to embed relevant ads into their micro-videos, which not only provides them with business income but helps the audiences to discover their interesting products. However, due to the micro-video recording by unprofessional equipment, involving various topics and including multiple modalities, it is challenging to locate the products related to micro-videos efficiently, appropriately, and accurately. We formulate the microvideo-product retrieval task, which is the first attempt to explore the retrieval between the multi-modal and multi-modal instances. A novel approach named Multi-Queue Momentum Contrast (MQMC) network is proposed for bidirectional retrieval, consisting of the uni-modal feature and multi-modal instance representation learning. Moreover, a discriminative selection strategy with a multi-queue is used to distinguish the importance of different negatives based on their categories. We collect two large-scale microvideo-product datasets (MVS and MVS-large) for evaluation and manually construct the hierarchical category ontology, which covers sundry products in daily life. Extensive experiments show that MQMC outperforms the state-of-the-art baselines. Our replication package (including code, dataset, etc.) is publicly available at https://github.com/duyali2000/MQMC.
translated by 谷歌翻译
There is increasing adoption of artificial intelligence in drug discovery. However, existing works use machine learning to mainly utilize the chemical structures of molecules yet ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions, and predict complex biological activities. We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecule's chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct the largest multi-modal dataset to date, namely PubChemSTM, with over 280K chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM possesses two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
translated by 谷歌翻译
Adder Neural Network (AdderNet) provides a new way for developing energy-efficient neural networks by replacing the expensive multiplications in convolution with cheaper additions (i.e.l1-norm). To achieve higher hardware efficiency, it is necessary to further study the low-bit quantization of AdderNet. Due to the limitation that the commutative law in multiplication does not hold in l1-norm, the well-established quantization methods on convolutional networks cannot be applied on AdderNets. Thus, the existing AdderNet quantization techniques propose to use only one shared scale to quantize both the weights and activations simultaneously. Admittedly, such an approach can keep the commutative law in the l1-norm quantization process, while the accuracy drop after low-bit quantization cannot be ignored. To this end, we first thoroughly analyze the difference on distributions of weights and activations in AdderNet and then propose a new quantization algorithm by redistributing the weights and the activations. Specifically, the pre-trained full-precision weights in different kernels are clustered into different groups, then the intra-group sharing and inter-group independent scales can be adopted. To further compensate the accuracy drop caused by the distribution difference, we then develop a lossless range clamp scheme for weights and a simple yet effective outliers clamp strategy for activations. Thus, the functionality of full-precision weights and the representation ability of full-precision activations can be fully preserved. The effectiveness of the proposed quantization method for AdderNet is well verified on several benchmarks, e.g., our 4-bit post-training quantized adder ResNet-18 achieves an 66.5% top-1 accuracy on the ImageNet with comparable energy efficiency, which is about 8.5% higher than that of the previous AdderNet quantization methods.
translated by 谷歌翻译
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
translated by 谷歌翻译
Image-text retrieval in remote sensing aims to provide flexible information for data analysis and application. In recent years, state-of-the-art methods are dedicated to ``scale decoupling'' and ``semantic decoupling'' strategies to further enhance the capability of representation. However, these previous approaches focus on either the disentangling scale or semantics but ignore merging these two ideas in a union model, which extremely limits the performance of cross-modal retrieval models. To address these issues, we propose a novel Scale-Semantic Joint Decoupling Network (SSJDN) for remote sensing image-text retrieval. Specifically, we design the Bidirectional Scale Decoupling (BSD) module, which exploits Salience Feature Extraction (SFE) and Salience-Guided Suppression (SGS) units to adaptively extract potential features and suppress cumbersome features at other scales in a bidirectional pattern to yield different scale clues. Besides, we design the Label-supervised Semantic Decoupling (LSD) module by leveraging the category semantic labels as prior knowledge to supervise images and texts probing significant semantic-related information. Finally, we design a Semantic-guided Triple Loss (STL), which adaptively generates a constant to adjust the loss function to improve the probability of matching the same semantic image and text and shorten the convergence time of the retrieval model. Our proposed SSJDN outperforms state-of-the-art approaches in numerical experiments conducted on four benchmark remote sensing datasets.
translated by 谷歌翻译
Vision Transformers (ViTs) outperforms convolutional neural networks (CNNs) in several vision tasks with its global modeling capabilities. However, ViT lacks the inductive bias inherent to convolution making it require a large amount of data for training. This results in ViT not performing as well as CNNs on small datasets like medicine and science. We experimentally found that masked autoencoders (MAE) can make the transformer focus more on the image itself, thus alleviating the data-hungry issue of ViT to some extent. Yet the current MAE model is too complex resulting in over-fitting problems on small datasets. This leads to a gap between MAEs trained on small datasets and advanced CNNs models still. Therefore, we investigated how to reduce the decoder complexity in MAE and found a more suitable architectural configuration for it with small datasets. Besides, we additionally designed a location prediction task and a contrastive learning task to introduce localization and invariance characteristics for MAE. Our contrastive learning task not only enables the model to learn high-level visual information but also allows the training of MAE's class token. This is something that most MAE improvement efforts do not consider. Extensive experiments have shown that our method shows state-of-the-art performance on standard small datasets as well as medical datasets with few samples compared to the current popular masked image modeling (MIM) and vision transformers for small datasets.The code and models are available at https://github.com/Talented-Q/SDMAE.
translated by 谷歌翻译