Quantitative cancer image analysis relies on the accurate delineation of tumours, a very specialised and time-consuming task. For this reason, methods for automated segmentation of tumours in medical imaging have been extensively developed in recent years, being Computed Tomography one of the most popular imaging modalities explored. However, the large amount of 3D voxels in a typical scan is prohibitive for the entire volume to be analysed at once in conventional hardware. To overcome this issue, the processes of downsampling and/or resampling are generally implemented when using traditional convolutional neural networks in medical imaging. In this paper, we propose a new methodology that introduces a process of sparsification of the input images and submanifold sparse convolutional networks as an alternative to downsampling. As a proof of concept, we applied this new methodology to Computed Tomography images of renal cancer patients, obtaining performances of segmentations of kidneys and tumours competitive with previous methods (~84.6% Dice similarity coefficient), while achieving a significant improvement in computation time (2-3 min per training epoch).
translated by 谷歌翻译
自动图像分析中的不确定性定量在许多应用中高度满足。通常,分类或细分中的机器学习模型仅用于提供二进制答案。但是,量化模型的不确定性可能在主动学习或机器人类互动中起关键作用。当使用基于深度学习的模型时,不确定性量化尤其困难,这是许多成像应用中最新的。当前的不确定性量化方法在高维实际问题中不能很好地扩展。可扩展的解决方案通常依赖于具有不同随机种子的相同模型的推理或训练集合过程中的经典技术,以获得后验分布。在本文中,我们表明这些方法无法近似分类概率。相反,我们提出了一个可扩展和直观的框架来校准深度学习模型的合奏,以产生近似分类概率的不确定性定量测量。在看不见的测试数据上,我们证明了与标准方法进行比较时的校准,灵敏度(三种情况中的两种)以及精度。我们进一步激发了我们在积极学习中的方法的用法,创建了伪标签,以从未标记的图像和人机合作中学习。
translated by 谷歌翻译
人工智能(AI)为简化Covid-19诊断提供了有前景的替代。然而,涉及周围的安全和可信度的担忧阻碍了大规模代表性的医学数据,对临床实践中训练广泛的模型造成了相当大的挑战。为了解决这个问题,我们启动了统一的CT-Covid AI诊断计划(UCADI),其中AI模型可以在没有数据共享的联合学习框架(FL)下在每个主机机构下分发和独立地在没有数据共享的情况下在每个主机机构上执行。在这里,我们认为我们的FL模型通过大的产量(中国测试敏感性/特异性:0.973 / 0.951,英国:0.730 / 0.942),与专业放射科医师的面板实现可比性表现。我们进一步评估了持有的模型(从另外两家医院收集,留出FL)和异构(用造影材料获取)数据,提供了模型所做的决策的视觉解释,并分析了模型之间的权衡联邦培训过程中的性能和沟通成本。我们的研究基于来自位于中国和英国的23家医院的3,336名患者的9,573次胸部计算断层扫描扫描(CTS)。统称,我们的工作提出了利用联邦学习的潜在保留了数字健康的前景。
translated by 谷歌翻译
In this work, we address the problem of unsupervised moving object segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no ground truth annotations are involved. Deep learning-based state-of-the-art methods for LiDAR MOS strongly depend on annotated ground truth data, which is expensive to obtain and scarce in existence. To close this gap in the stationary setting, we propose a novel 4D LiDAR representation based on multivariate time series that relaxes the problem of unsupervised MOS to a time series clustering problem. More specifically, we propose modeling the change in occupancy of a voxel by a multivariate occupancy time series (MOTS), which captures spatio-temporal occupancy changes on the voxel level and its surrounding neighborhood. To perform unsupervised MOS, we train a neural network in a self-supervised manner to encode MOTS into voxel-level feature representations, which can be partitioned by a clustering algorithm into moving or stationary. Experiments on stationary scenes from the Raw KITTI dataset show that our fully unsupervised approach achieves performance that is comparable to that of supervised state-of-the-art approaches.
translated by 谷歌翻译
Many prior language modeling efforts have shown that pre-training on an in-domain corpus can significantly improve performance on downstream domain-specific NLP tasks. However, the difficulties associated with collecting enough in-domain data might discourage researchers from approaching this pre-training task. In this paper, we conducted a series of experiments by pre-training Bidirectional Encoder Representations from Transformers (BERT) with different sizes of biomedical corpora. The results demonstrate that pre-training on a relatively small amount of in-domain data (4GB) with limited training steps, can lead to better performance on downstream domain-specific NLP tasks compared with fine-tuning models pre-trained on general corpora.
translated by 谷歌翻译
In this paper, we explore the relationship between an individual's writing style and the risk that they will engage in online harmful behaviors (such as cyberbullying). In particular, we consider whether measurable differences in writing style relate to different personality types, as modeled by the Big-Five personality traits and the Dark Triad traits, and can differentiate between users who do or do not engage in harmful behaviors. We study messages from nearly 2,500 users from two online communities (Twitter and Reddit) and find that we can measure significant personality differences between regular and harmful users from the writing style of as few as 100 tweets or 40 Reddit posts, aggregate these values to distinguish between healthy and harmful communities, and also use style attributes to predict which users will engage in harmful behaviors.
translated by 谷歌翻译
3D autonomous driving semantic segmentation using deep learning has become, a well-studied subject, providing methods that can reach very high performance. Nonetheless, because of the limited size of the training datasets, these models cannot see every type of object and scenes found in real-world applications. The ability to be reliable in these various unknown environments is called domain generalization. Despite its importance, domain generalization is relatively unexplored in the case of 3D autonomous driving semantic segmentation. To fill this gap, this paper presents the first benchmark for this application by testing state-of-the-art methods and discussing the difficulty of tackling LiDAR domain shifts. We also propose the first method designed to address this domain generalization, which we call 3DLabelProp. This method relies on leveraging the geometry and sequentiality of the LiDAR data to enhance its generalization performances by working on partially accumulated point clouds. It reaches a mIoU of 52.6% on SemanticPOSS while being trained only on SemanticKITTI, making it state-of-the-art method for generalization (+7.4% better than the second best method). The code for this method will be available on Github.
translated by 谷歌翻译
Over the last years, topic modeling has emerged as a powerful technique for organizing and summarizing big collections of documents or searching for particular patterns in them. However, privacy concerns arise when cross-analyzing data from different sources is required. Federated topic modeling solves this issue by allowing multiple parties to jointly train a topic model without sharing their data. While several federated approximations of classical topic models do exist, no research has been carried out on their application for neural topic models. To fill this gap, we propose and analyze a federated implementation based on state-of-the-art neural topic modeling implementations, showing its benefits when there is a diversity of topics across the nodes' documents and the need to build a joint model. Our approach is by construction theoretically and in practice equivalent to a centralized approach but preserves the privacy of the nodes.
translated by 谷歌翻译
Some recent pieces of work in the Machine Learning (ML) literature have demonstrated the usefulness of assessing which observations are hardest to have their label predicted accurately. By identifying such instances, one may inspect whether they have any quality issues that should be addressed. Learning strategies based on the difficulty level of the observations can also be devised. This paper presents a set of meta-features that aim at characterizing which instances of a dataset are hardest to have their label predicted accurately and why they are so, aka instance hardness measures. Both classification and regression problems are considered. Synthetic datasets with different levels of complexity are built and analyzed. A Python package containing all implementations is also provided.
translated by 谷歌翻译
The accurate prediction of physicochemical properties of chemical compounds in mixtures (such as the activity coefficient at infinite dilution $\gamma_{ij}^\infty$) is essential for developing novel and more sustainable chemical processes. In this work, we analyze the performance of previously-proposed GNN-based models for the prediction of $\gamma_{ij}^\infty$, and compare them with several mechanistic models in a series of 9 isothermal studies. Moreover, we develop the Gibbs-Helmholtz Graph Neural Network (GH-GNN) model for predicting $\ln \gamma_{ij}^\infty$ of molecular systems at different temperatures. Our method combines the simplicity of a Gibbs-Helmholtz-derived expression with a series of graph neural networks that incorporate explicit molecular and intermolecular descriptors for capturing dispersion and hydrogen bonding effects. We have trained this model using experimentally determined $\ln \gamma_{ij}^\infty$ data of 40,219 binary-systems involving 1032 solutes and 866 solvents, overall showing superior performance compared to the popular UNIFAC-Dortmund model. We analyze the performance of GH-GNN for continuous and discrete inter/extrapolation and give indications for the model's applicability domain and expected accuracy. In general, GH-GNN is able to produce accurate predictions for extrapolated binary-systems if at least 25 systems with the same combination of solute-solvent chemical classes are contained in the training set and a similarity indicator above 0.35 is also present. This model and its applicability domain recommendations have been made open-source at https://github.com/edgarsmdn/GH-GNN.
translated by 谷歌翻译