Quantitative cancer image analysis relies on the accurate delineation of tumours, a very specialised and time-consuming task. For this reason, methods for automated segmentation of tumours in medical imaging have been extensively developed in recent years, being Computed Tomography one of the most popular imaging modalities explored. However, the large amount of 3D voxels in a typical scan is prohibitive for the entire volume to be analysed at once in conventional hardware. To overcome this issue, the processes of downsampling and/or resampling are generally implemented when using traditional convolutional neural networks in medical imaging. In this paper, we propose a new methodology that introduces a process of sparsification of the input images and submanifold sparse convolutional networks as an alternative to downsampling. As a proof of concept, we applied this new methodology to Computed Tomography images of renal cancer patients, obtaining performances of segmentations of kidneys and tumours competitive with previous methods (~84.6% Dice similarity coefficient), while achieving a significant improvement in computation time (2-3 min per training epoch).
translated by 谷歌翻译
头颈肿瘤分割挑战(Hecktor)2022为研究人员提供了一个平台,可以将其解决方案与3D CT和PET图像的肿瘤和淋巴结分割。在这项工作中,我们描述了针对Hecktor 2022分割任务的解决方案。我们将所有图像重新样本为共同的分辨率,在头颈部和颈部区域周围的作物,并从Monai训练Segresnet语义分割网络。我们使用5倍的交叉验证来选择最佳模型检查点。最终提交是3次运行中的15个型号的合奏。我们的解决方案(NVAUTO团队名称)以0.78802的汇总骰子得分在Hecktor22挑战排行榜上获得第一名。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
肺癌是世界大多数国家的死亡原因。由于提示肿瘤的诊断可以允许肿瘤学家辨别他们的性质,类型和治疗方式,CT扫描图像的肿瘤检测和分割是全球的关键研究领域。本文通过在Lotus DataSet上应用二维离散小波变换(DWT)来接近肺肿瘤分割,以进行更细致的纹理分析,同时将来自相邻CT切片的信息集成到馈送到深度监督的多路仓模型之前。在训练网络的同时,学习速率,衰减和优化算法的变化导致了不同的骰子共同效率,其详细统计数据已经包含在本文中。我们还讨论了此数据集中的挑战以及我们选择如何克服它们。本质上,本研究旨在通过试验多个适当的网络来最大化从二维CT扫描切片预测肿瘤区域的成功率,导致骰子共同效率为0.8472。
translated by 谷歌翻译
腹部器官分割是一项艰巨且耗时的任务。为了减轻临床专家的负担,非常需要完全自动化的方法。当前的方法由卷积神经网络(CNN)主导,但是计算要求和对大数据集的需求限制了其在实践中的应用。通过实施小而高效的自定义3D CNN,编译训练的模型并优化计算图:我们的方法可产生高精度分割(骰子相似性系数(%):肝脏:97.3 $ \ pm 1.3,肾脏:94.8 $ \ pm $ 3.6,$ 3.6,,$ 3.6,,$ 3.6,,,$ 3.6,,,$ 3.6,,,$ 3.6,,$ \ pm $ 3.6,,肝气脾脏:96.4 $ \ pm $ 3.0,pancreas:80.9 $ \ pm $ 10.1),每张图像1.6秒。至关重要的是,我们能够仅在CPU上执行细分推断(无需GPU),从而在没有专家硬件的情况下便利地促进模型的简单和广泛部署。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
Automatic segmentation of kidney and kidney tumour in Computed Tomography (CT) images is essential, as it uses less time as compared to the current gold standard of manual segmentation. However, many hospitals are still reliant on manual study and segmentation of CT images by medical practitioners because of its higher accuracy. Thus, this study focuses on the development of an approach for automatic kidney and kidney tumour segmentation in contrast-enhanced CT images. A method based on Convolutional Neural Network (CNN) was proposed, where a 3D U-Net segmentation model was developed and trained to delineate the kidney and kidney tumour from CT scans. Each CT image was pre-processed before inputting to the CNN, and the effect of down-sampled and patch-wise input images on the model performance was analysed. The proposed method was evaluated on the publicly available 2021 Kidney and Kidney Tumour Segmentation Challenge (KiTS21) dataset. The method with the best performing model recorded an average training Dice score of 0.6129, with the kidney and kidney tumour Dice scores of 0.7923 and 0.4344, respectively. For testing, the model obtained a kidney Dice score of 0.8034, and a kidney tumour Dice score of 0.4713, with an average Dice score of 0.6374.
translated by 谷歌翻译
尽管存在能够在许多医疗数据集上表现出很好的语义分割方法,但是通常,它们不设计用于直接用于临床实践。两个主要问题是通过不同的视觉外观的解开数据的概括,例如,使用不同的扫描仪获取的图像,以及计算时间和所需图形处理单元(GPU)存储器的效率。在这项工作中,我们使用基于SpatialConfiguration-Net(SCN)的多器官分段模型,该模型集成了标记器官中的空间配置的先验知识,以解决网络输出中的虚假响应。此外,我们修改了分割模型的体系结构,尽可能地减少其存储器占用空间,而不会急剧影响预测的质量。最后,我们实现了最小的推理脚本,我们优化了两者,执行时间和所需的GPU内存。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022. For Task 1, the automatic segmentation task, our approach was, in contrast to earlier solutions using 3D segmentation, to keep it as simple as possible using a 2D model, analyzing every slice as a standalone image. In addition, we were interested in understanding how different modalities influence the results. We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans. For Task 2, the prediction of recurrence-free survival, we first proposed two approaches, one where we only use patient data and one where we combined the patient data with segmentations from the image model. For the prediction of the first two approaches, we used Random Forest. In our third approach, we combined patient data and image data using XGBoost. Low kidney function might worsen cancer prognosis. In this approach, we therefore estimated the kidney function of the patients and included it as a feature. Overall, we conclude that our simple methods were not able to compete with the highest-ranking submissions, but we still obtained reasonably good scores. We also got interesting insights into how the combination of different modalities can influence the segmentation and predictions.
translated by 谷歌翻译
胰腺癌是与癌症相关死亡的全球主要原因之一。尽管深度学习在计算机辅助诊断和检测方法(CAD)方法中取得了成功,但很少关注胰腺癌的检测。我们提出了一种检测胰腺肿瘤的方法,该方法在周围的解剖结构中利用临床上的特征,从而更好地旨在利用放射科医生的知识,而不是其他常规的深度学习方法。为此,我们收集了一个新的数据集,该数据集由99例胰腺导管腺癌(PDAC)和97例没有胰腺肿瘤的对照病例组成。由于胰腺癌的生长模式,肿瘤可能总是可见为低音病变,因此,专家指的是二次外部特征的可见性,这些特征可能表明肿瘤的存在。我们提出了一种基于U-NET样深的CNN的方法,该方法利用以下外部次要特征:胰管,常见的胆管和胰腺以及处理后的CT扫描。使用这些功能,该模型如果存在胰腺肿瘤。这种用于分类和本地化方法的细分实现了99%的敏感性(一个案例)和99%的特异性,这比以前的最新方法的灵敏度增加了5%。与以前的PDAC检测方法相比,该模型还以合理的精度和较短的推理时间提供位置信息。这些结果提供了显着的性能改善,并强调了在开发新型CAD方法时纳入临床专家知识的重要性。
translated by 谷歌翻译
The prediction of pancreatic ductal adenocarcinoma therapy response is a clinically challenging and important task in this high-mortality tumour entity. The training of neural networks able to tackle this challenge is impeded by a lack of large datasets and the difficult anatomical localisation of the pancreas. Here, we propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy which is based on the Response Evaluation Criteria in Solid Tumors (RECIST) score, a standardised method for cancer response evaluation by clinicians as well as tumour markers, and clinical evaluation of the patients. We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning. Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
发现采用时间分离技术(TST)的基于模型的重建可以使用C臂锥束计算机断层扫描(CBCT)改善肝脏的动态灌注成像。要使用从CT灌注数据中提取的先验知识应用TST,应从CT扫描中准确分割肝脏。需要对主要和基于模型的CBCT数据进行重建,以正确可视化和解释灌注图。这项研究提出了Turbolift Learning,该学习按照培训CT,CBCT,CBCT,CBCT TST的顺序训练多尺度关注的多尺度注意力,UNET串行序列上的不同肝脏细分任务 - 使先前的培训作为前培训作为预训练阶段的阶段随后的问题 - 解决培训数据集数量有限的问题。对于CBCT TST的肝脏分割的最终任务,提议的方法的总骰子得分为0.874 $ \ pm $ 0.031和0.905 $ \ pm $ \ $ \ $ 0.007,分别为6倍和4倍的交叉验证实验 - 获得统计上显着的改进 - 在模型上,该模型仅接受该任务。实验表明,涡轮增压不仅提高了模型的整体性能,而且还使其与源自栓塞材料和截断物品的人工制品具有稳健性。此外,深入分析确认了分割任务的顺序。本文显示了从CT,CBCT和CBCT TST分割肝脏的潜力,从可用的有限培训数据中学习,将来可能会用于可视化和评估灌注图的肝病评估。 。
translated by 谷歌翻译
肝脏是脊椎动物中最关键的代谢器官之一,由于其在人体中的重要功能,例如废物产物和药物的血液排毒。由于肝肿瘤引起的肝病是全球最常见的死亡率之一。因此,在肿瘤发育的早期阶段检测肝肿瘤是医疗治疗的关键部分。许多成像方式可以用作检测肝肿瘤的帮助工具。计算机断层扫描(CT)是软组织器官(例如肝脏)最常用的成像方式。这是因为它是一种侵入性方式,可以相对迅速捕获。本文提出了一个有效的自动肝分割框架,以使用3D CNN深度元网络模型检测和分割肝脏腹部扫描。许多研究采用了精确分割肝区域,然后使用分割的肝区域作为肿瘤分割方法的输入,因为它降低了由于将腹部器官分割为肿瘤而导致的错误率。所提出的3D CNN DeepMedic模型具有两个输入途径,而不是一个途径,如原始3D CNN模型所示。在本文中,该网络提供了多个腹部CT版本,这有助于提高细分质量。提出的模型分别达到94.36%,94.57%,91.86%和93.14%的精度,灵敏度,特异性和骰子相似性得分。实验结果表明该方法的适用性。
translated by 谷歌翻译
Despite high global prevalence of hepatic steatosis, no automated diagnostics demonstrated generalizability in detecting steatosis on multiple international datasets. Traditionally, hepatic steatosis detection relies on clinicians selecting the region of interest (ROI) on computed tomography (CT) to measure liver attenuation. ROI selection demands time and expertise, and therefore is not routinely performed in populations. To automate the process, we validated an existing artificial intelligence (AI) system for 3D liver segmentation and used it to purpose a novel method: AI-ROI, which could automatically select the ROI for attenuation measurements. AI segmentation and AI-ROI method were evaluated on 1,014 non-contrast enhanced chest CT images from eight international datasets: LIDC-IDRI, NSCLC-Lung1, RIDER, VESSEL12, RICORD-1A, RICORD-1B, COVID-19-Italy, and COVID-19-China. AI segmentation achieved a mean dice coefficient of 0.957. Attenuations measured by AI-ROI showed no significant differences (p = 0.545) and a reduction of 71% time compared to expert measurements. The area under the curve (AUC) of the steatosis classification of AI-ROI is 0.921 (95% CI: 0.883 - 0.959). If performed as a routine screening method, our AI protocol could potentially allow early non-invasive, non-pharmacological preventative interventions for hepatic steatosis. 1,014 expert-annotated liver segmentations of patients with hepatic steatosis annotations can be downloaded here: https://drive.google.com/drive/folders/1-g_zJeAaZXYXGqL1OeF6pUjr6KB0igJX.
translated by 谷歌翻译
目的:要开发和验证计算机工具,用于在计算机断层扫描(CT)扫描上描绘的上述组织的自动和同时分割的计算机工具:内脏脂肪(VAT),皮下脂肪(SAT),骨骼脂肪(IMAT),骨骼肌(SM)和骨头。方法:使用了从癌症成像档案(TCIA)获得的100 CT扫描的队列 - 50个全身正电子发射断层扫描(PET)-CTS,25胸和25腹部。手动注释五种不同的身体组合物(VAT,SAT,IMAT,SM和骨骼)。培训次训练策略用于效率。使用已经注释的案例训练了UNET模型。然后,该模型用于为剩余情况启用半自动注释。使用10倍的交叉验证方法来开发和验证几种卷积神经网络(CNNS)的性能,包括UNET,复发性残留的UNET(R2UNET)和UNET ++。在培训CNN模型时使用3-D贴片采样操作。测试了单独培训的CNN模型,看看它们是否可以达到更好的性能而不是共同分割它们。配对样品T检验用于测试统计显着性。结果:在三种CNN模型中,UNET在共同分割五个身体组合物中表现出最佳的整体性能,骰子系数为0.840 +/- 0.091,0.908 +/- 0.067,0.603 +/- 0.084,0.889 +/- 0.027,和0.884 +/- 0.031,Jaccard指数为0.734 +/- 0.119,0.837 +/- 0.096,0.437 +/- 0.082,0.800 +/- 0.042,0.793 +/- 0.049,分别用于增值税,SAT,IMAT, SM和骨头。结论:分段体组合物中的CNN模型中没有显着差异,但共同分段体组合物比分别分割更好的性能。
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译