Recently, many deep learning based beamformers have been proposed for multi-channel speech separation. Nevertheless, most of them rely on extra cues known in advance, such as speaker feature, face image or directional information. In this paper, we propose an end-to-end beamforming network for direction guided speech separation given merely the mixture signal, namely MIMO-DBnet. Specifically, we design a multi-channel input and multiple outputs architecture to predict the direction-of-arrival based embeddings and beamforming weights for each source. The precisely estimated directional embedding provides quite effective spatial discrimination guidance for the neural beamformer to offset the effect of phase wrapping, thus allowing more accurate reconstruction of two sources' speech signals. Experiments show that our proposed MIMO-DBnet not only achieves a comprehensive decent improvement compared to baseline systems, but also maintain the performance on high frequency bands when phase wrapping occurs.
translated by 谷歌翻译
最近基于神经网络的到达方向(DOA)估计算法在未知数的声源场景上表现良好。这些算法通常是通过将多通道音频输入映射到单个输出(即所有来源的总空间伪谱(SP))来实现的,称为MISO。但是,这种误语算法在很大程度上取决于经验阈值设置和声音源之间的角度大于固定角度的角度假设。为了解决这些局限性,我们提出了一种新型的多通道输入和多个输出的DOA网络,称为MIMO-DOANET。与一般的误觉算法不同,Mimo-Doanet借助于信息的空间协方差矩阵预测了每个声源的SPS编码。通过这样做,检测声源数量的阈值任务成为检测每个输出中是否存在声音源的更容易的任务,并且在推理阶段,声源之间的严重交互消失。实验结果表明,与3,4个来源场景中的莫斯科基线相比,MIMO-DOANET的相对增长18.6%和绝对13.3%,相对34.4%和绝对20.2%的F1得分提高。结果还证明了Mimo-Doanet减轻了阈值设置问题,并有效地解决了角度假设问题。
translated by 谷歌翻译
双重编码器结构成功地利用了两个特定语言的编码器(LSE)进行代码转换语音识别。由于LSE由两个预训练的语言特定模型(LSM)初始化,因此双编码器结构可以利用足够的单语言数据并捕获单个语言属性。但是,现有方法对LSE的语言没有限制,并且不足以针对LSM的语言知识。在本文中,我们提出了一种特定语言的特征辅助(LSCA)方法来减轻上述问题。具体来说,在培训期间,我们引入了两种特定语言的损失作为语言限制,并为其生成相应的语言目标。在解码过程中,我们通过组合两个LSM和混合模型的输出概率来考虑LSM的解码能力,以获得最终预测。实验表明,LSCA的训练或解码方法可以改善模型的性能。此外,通过组合LSCA的训练和解码方法,最佳结果可以在代码切换测试集上获得多达15.4%的相对误差。此外,该系统可以通过使用我们的方法来很好地处理代码转换语音识别任务,而无需额外的共享参数,甚至可以基于两个预训练的LSM进行重新训练。
translated by 谷歌翻译
声源本地化旨在从观察到的多通道音频寻求所有声源的到达方向(DOA)。对于未知数量来源的实际问题,现有的本地化算法试图预测基于似然的编码(即空间频谱),并采用预先确定的阈值来检测源编号和相应的DOA值。但是,这些基于阈值的算法不稳定,因为它们受到仔细选择阈值的限制。为了解决此问题,我们提出了一种称为ISSL的迭代声源本地化方法,该方法可以迭代地提取每个源的DOA而无需阈值,直到满足终止标准为止。与基于阈值的算法不同,ISSL设计基于二进制分类器的活动源检测器网络,以接受残留的空间频谱并决定是否停止迭代。通过这样做,我们的ISSL可以处理任意数量的来源,甚至超过培训阶段中看到的来源数量。实验结果表明,与现有的基于阈值的算法相比,我们的ISSL在DOA估计和源数检测方面都取得了重大的性能提高。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译