目前,深度神经网络(DNN)在不同的应用中被广泛采用。尽管具有商业价值,但培训良好的DNN仍在资源消费。因此,训练有素的模型是其所有者的宝贵知识产权。但是,最近的研究揭示了模型窃取的威胁,即使他们只能查询模型,对手也可以获得受害者模型的功能相似的副本。在本文中,我们提出了一个有效且无害的模型所有权验证(移动),以防御不同类型的模型窃取,而无需引入新的安全风险。通常,我们通过验证可疑模型是否包含辩护人指定的外部特征的知识来进行所有权验证。具体而言,我们通过将一些训练样本带来样式转移来嵌入外部功能。然后,我们训练一个元分类器,以确定模型是否被受害者偷走了。这种方法的灵感来自于理解,即被盗模型应包含受害者模型学到的功能的知识。特别是,我们在白色框和黑框设置下开发了移动方法,以提供全面的模型保护。基准数据集的广泛实验验证了我们方法的有效性及其对潜在适应性攻击的抵抗力。复制我们方法的主要实验的代码可在\ url {https://github.com/thuyimingli/move}上获得。
translated by 谷歌翻译
获得训练有素的模型涉及昂贵的数据收集和培训程序,因此该模型是有价值的知识产权。最近的研究表明,即使在没有培训样本,也可以“窃取”部署模型,无法访问模型参数或结构。目前,有一些防御方法可以减轻这种威胁,主要是提高模型窃取的成本。在本文中,我们通过验证可疑模型是否包含对Defender指定的知识{外部特征}来探讨其他角度的防御。具体而言,我们通过用风格的转移回火,嵌入外部特征。然后,我们培训一个元分类器以确定模型是否从受害者中偷走。这种方法是通过了解偷窃模型应该包含受害者模型学习的特征知识的启发。我们在Cifar-10和Imagenet数据集中检查我们的方法。实验结果表明,即使通过多级窃取过程获得被盗模型,我们的方法在同时检测不同类型的模型窃取。再现主要结果的代码可在Github(https://github.com/zlh-thu/stealing验证)上获得。
translated by 谷歌翻译
离线强化学习利用静态数据集来学习最佳策略,无需访问环境。由于代理商在线交互的展示和培训期间的样本数量,这种技术对于多代理学习任务是可取的。然而,在多代理强化学习(Marl)中,从未研究过在线微调的离线预训练的范式从未研究过,可以使用离线MARL研究的数据集或基准。在本文中,我们试图回答违规在Marl中的离线培训是否能够学习一般的政策表现,这些问题可以帮助提高多个下游任务的性能。我们首先引入基于Starcraftia环境的不同质量水平的第一个离线Marl数据集,然后提出了用于有效的离线学习的多代理决策变压器(MADT)的新颖体系结构。 MADT利用变换器的时间表示的建模能力,并将其与离线和在线MARL任务集成。 Madt的一个至关重要的好处是,它学会了可以在不同任务场景下不同类型的代理之间转移的可稳定性政策。当在脱机目的Datline数据上进行评估时,Madt展示了比最先进的离线RL基线的性能卓越。当应用于在线任务时,预先训练的MADT显着提高了样品效率,即使在零射击案件中也享有强大的性能。为了我们的最佳知识,这是第一个研究并展示了在Marl中的样本效率和最常性增强方面的离线预训练模型的有效性。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译