Continual Learning is considered a key step toward next-generation Artificial Intelligence. Among various methods, replay-based approaches that maintain and replay a small episodic memory of previous samples are one of the most successful strategies against catastrophic forgetting. However, since forgetting is inevitable given bounded memory and unbounded tasks, how to forget is a problem continual learning must address. Therefore, beyond simply avoiding catastrophic forgetting, an under-explored issue is how to reasonably forget while ensuring the merits of human memory, including 1. storage efficiency, 2. generalizability, and 3. some interpretability. To achieve these simultaneously, our paper proposes a new saliency-augmented memory completion framework for continual learning, inspired by recent discoveries in memory completion separation in cognitive neuroscience. Specifically, we innovatively propose to store the part of the image most important to the tasks in episodic memory by saliency map extraction and memory encoding. When learning new tasks, previous data from memory are inpainted by an adaptive data generation module, which is inspired by how humans complete episodic memory. The module's parameters are shared across all tasks and it can be jointly trained with a continual learning classifier as bilevel optimization. Extensive experiments on several continual learning and image classification benchmarks demonstrate the proposed method's effectiveness and efficiency.
translated by 谷歌翻译
大多数现有的半监督基于图的聚类方法通过完善亲和力矩阵或直接限制数据点的低维表示来利用监督信息。亲和力矩阵代表图形结构,对于半监督基于图的聚类的性能至关重要。但是,现有方法采用静态亲和力矩阵来学习数据点的低维表示,并且在学习过程中不会优化亲和力矩阵。在本文中,我们提出了一种新型的动态图结构学习方法,用于半监督聚类。在这种方法中,我们通过利用给定的成对约束来同时优化数据点的亲和力矩阵和低维表示。此外,我们提出了一种交替的最小化方法,并通过可靠的收敛来解决提出的非凸模型。在迭代过程中,我们的方法周期性地更新数据点的低维表示并完善了亲和力矩阵,从而导致动态亲和力矩阵(图结构)。具体而言,为了更新亲和力矩阵,我们强制使用具有明显不同的低维表示的数据点具有相关值为0。点。在不同设置下的八个基准数据集上的实验结果显示了所提出方法的优势。
translated by 谷歌翻译
因果推论在电子商务和精确医学等各个领域都有广泛的应用,其性能在很大程度上取决于对个体治疗效果(ITE)的准确估计。通常,通过在其各个样品空间中分别对处理和控制响应函数进行建模来预测ITE。但是,这种方法通常会在实践中遇到两个问题,即治疗偏见引起的治疗组和对照组之间的分布分布以及其人口规模的显着样本失衡。本文提出了深层的整个空间跨网络(DESCN),以从端到端的角度进行建模治疗效果。 DESCN通过多任务学习方式捕获了治疗倾向,反应和隐藏治疗效果的综合信息。我们的方法共同学习了整个样品空间中的治疗和反应功能,以避免治疗偏见,并采用中间伪治疗效应预测网络来减轻样品失衡。从电子商务凭证分销业务的合成数据集和大规模生产数据集进行了广泛的实验。结果表明,DESCN可以成功提高ITE估计的准确性并提高提升排名的性能。发布生产数据集和源代码的样本是为了促进社区的未来研究,据我们所知,这是首个大型公共偏见的因果推理数据集。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
事件摄像机最近在高动力或具有挑战性的照明情况下具有强大的常规摄像头的潜力,因此摄影机最近变得越来越受欢迎。通过同时定位和映射(SLAM)给出了可能受益于事件摄像机的重要问题。但是,为了确保在包含事件的多传感器大满贯上进展,需要新颖的基准序列。我们的贡献是使用包含基于事件的立体声摄像机,常规立体声摄像机,多个深度传感器和惯性测量单元的多传感器设置捕获的第一组基准数据集。该设置是完全硬件同步的,并且经过了准确的外部校准。所有序列都均均均均由高度准确的外部参考设备(例如运动捕获系统)捕获的地面真相数据。各个序列都包括小型和大型环境,并涵盖动态视觉传感器针对的特定挑战。
translated by 谷歌翻译
图扩散问题,例如谣言,计算机病毒或智能电网故障的传播是无处不在的和社会的。因此,根据当前的图扩散观测值鉴定扩散源通常至关重要。尽管在实践中具有巨大的必要性和意义,但作为图扩散的逆问题,源定位是极具挑战性的,因为它的规模不足:不同的来源可能导致相同的图形扩散模式。与大多数传统的来源本地化方法不同,本文着重于概率方式,以说明不同候选来源的不确定性。这样的努力需要克服挑战,包括1)很难量化图形扩散源定位的不确定性; 2)图形扩散源的复杂模式很难被概率地表征; 3)很难强加任何潜在的扩散模式下的概括。为了解决上述挑战,本文提出了一个通用框架:用于在任意扩散模式下定位扩散源的源定位变异自动编码器(SL-VAE)。特别是,我们提出了一个概率模型,该模型利用正向扩散估计模型以及深生成模型来近似扩散源分布,以量化不确定性。 SL-VAE进一步利用了对源观察对的先验知识来表征通过学识渊博的生成性先验的扩散源的复杂模式。最后,一个集成正向扩散估计模型的统一目标被得出以强制执行模型以在任意扩散模式下概括。在7个现实世界数据集上进行了广泛的实验,以证明SL-VAE在重建扩散源的优势通过在AUC分数中平均20%来重建扩散源。
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
由于单个RGB图像的不利低对比度和弱可见性问题,低光图像增强(LLE)仍然具有挑战性。在本文中,我们回应了有趣的学习相关问题 - 如果利用可访问的既可接近的过分配对/曝光过度的图像和高级别的语义指导,可以提高尖端LLE模型的性能?在这里,我们提出了一种有效的语义对比的学习范例(即SCL-LLE)。除了现有的LLE智慧之外,它将图像增强任务施放为多任务联合学习,其中LLE被转换为对比学习,语义亮度一致性的三个约束,同时确保曝光,纹理和颜色一致性。 SCL-LLE允许LLE模型从未配对的阳性(常灯)/否定(过度/曝光),并使其与场景语义进行互动以正规化图像增强网络,但高级语义知识的相互作用并且在以前的方法中很少地研究了低级信号。培训易于获得的开放数据,广泛的实验表明,我们的方法超越了六个独立的交叉场景数据集的最先进的LLE模型。此外,讨论了SCL-LLE在极暗条件下有益于下游语义分割的潜力。源代码:https://github.com/linglix/sclle。
translated by 谷歌翻译
在输入图像的限制区域中工艺像素的对抗贴片攻击在物理环境中表明了它们在物理环境中的强大攻击效果。现有的认证防御对逆势补丁攻击的攻击良好,如MNIST和CIFAR-10数据集,但在图像上的更高分辨率图像上达到非常差的认证准确性。迫切需要在行业级更大的图像中针对这种实际和有害的攻击设计强大和有效的防御。在这项工作中,我们提出了认证的国防方法,以实现高分辨率图像的高可规范稳健性,并且在很大程度上提高了真正采用认证国防的实用性。我们的工作的基本洞察力是对抗性补丁打算利用局部表面的重要神经元(SIN)来操纵预测结果。因此,我们利用基于SIN的DNN压缩技术来通过减少搜索开销和过滤预测噪声的对抗区域来显着提高认证准确性。我们的实验结果表明,认证准确性从想象成数据集中的36.3%(最先进的认证检测)增加到60.4%,在很大程度上推动了实际使用的认证防御。
translated by 谷歌翻译
价格运动的预测旨在根据当前的市场条件和其他相关信息来预测金融资产的未来趋势。最近,机器学习(ML)方法已经变得越来越流行,并在学术界和工业中都取得了预测的有希望的结果。大多数现有的ML解决方案将预测问题作为分类(预测方向)或回归(以预测回报)问题,以期在整个培训数据集中。但是,由于财务数据的信噪比和随机性质极低,良好的交易机会极为稀缺。结果,如果没有仔细选择潜在的有利可图的样本,这种ML方法容易捕获噪声而不是真实信号的模式。为了解决这个问题,我们提出了一个新颖的价格变动预测框架,称为“地方意识到的关注和迭代精致标签”(LARA),由两个主要组成部分组成:1)局部意识 - 引起关注会自动提取潜在的有利可图的样品,以通过到周围的周围来提取。班级感知标签信息。此外,配备了公制学习技术,当地意识到的注意力享受特定于任务的距离指标,并以更有效的方式分散了对潜在有利可图的样本的关注。 2)迭代精致标签进一步迭代地完善了嘈杂样品的标签,然后结合了学到的预测因子,使其与看不见和嘈杂的样品相结合。在对三个现实世界金融市场的许多实验中:ETF,股票和加密货币,Lara与传统的时间序列分析方法和QLIB平台上的一组基于机器的竞争对手相比,取得了卓越的性能。广泛的消融研究和实验还表明,拉拉确实捕获了更可靠的交易机会。
translated by 谷歌翻译