Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
我们展示了如何采用回归函数$ \ hat {f} $,该{f} $适当地``多校准''并有效地将其后处理成近似错误的分类器,使分类器满足各种公平限制。后处理不需要标记的数据,只有一定数量的未标记数据和计算。计算$ \ hat f $的计算和样本复杂性要求与解决单个公平学习任务的要求相媲美,但实际上可以用来有效地解决许多不同的下游公平约束的学习问题。我们的后处理方法可以轻松处理相交组,从而将先前的工作推广到后处理回归功能上,以满足仅应用于分离组的公平约束。我们的工作扩展了最近的工作,表明多校准的回归函数是``omnipredictors''(即可以在后处理以最佳解决无约束的ERM问题)以进行约束优化。
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
深神经网络(DNN)的成功在很大程度上取决于计算资源。虽然DNN经常在云服务器上使用,但在边缘设备上运行DNN的需求越来越大。边缘设备的计算资源通常受到限制,但是,通常将多个边缘设备部署在相同的环境中,并且可以可靠地相互通信。在这项工作中,我们建议通过允许多个用户在推理过程中协作以提高其准确性来促进DNN在优势上的应用。我们的机制(创造的机制)基于每个设备的各种预测因子,在推理过程中构成了模型集合。为了减轻通信开销,用户共享量化的功能,我们提出了一种将多个决策汇总到单个推论规则中的方法。我们分析了边缘合奏所引起的延迟,表明其性能提高是以在通信网络上的共同假设下的较小延迟成本为代价的。我们的实验表明,配备紧凑型DNN的Edge合奏的协作推断显着提高了让每个用户在本地推断出的精度,并且可以使用大于整体中所有网络的单个集中式DNN胜过。
translated by 谷歌翻译
我们提出了简单的主动采样和重新重量策略,以优化最小最大公平性,可以应用于通过损耗最小化学习的任何分类或回归模型。我们的方法背后的关键直觉是在每个TIMESTEP中使用来自当前模型中最差的组的DataPoint,以更新模型。实施的易于实现和我们稳健的制定的一般性使其成为提高糟糕表现群体的模型性能的有吸引力的选择。对于凸起的学习问题,如线性或逻辑回归,我们提供了对我们的策略的细粒度分析,证明了其收敛速度对Min-Max Fair解决方案。
translated by 谷歌翻译
机器学习社区目前没有记录数据集的标准化过程,这可能导致高赌注域的严重后果。要解决此差距,我们提出了数据集的数据表。在电子行业,每个组件,无论多么简单或复杂,都附带了一个描述其操作特征,测试结果,推荐使用和其他信息的数据表。通过类比,我们建议每个数据集都附有一个数据表,这些表记录了它的动机,组成,收集过程,推荐用途等。数据集的数据表将有助于在数据集创建者和数据集消费者之间更好地沟通,并鼓励机器学习界优先考虑透明度和问责制。
translated by 谷歌翻译