Sigmorphon 2022关于词素分割的共享任务挑战了将单词分解为一系列词素的系统,并涵盖了大多数类型的形态:化合物,衍生和弯曲。子任务1,单词级词素细分,涵盖了9种语言的500万个单词(捷克,英语,西班牙语,匈牙利语,法语,意大利语,俄语,拉丁语,蒙古语),并收到了7个团队的13个系统提交,最佳系统平均为97.29%F1在所有语言中得分,英语(93.84%)到拉丁语(99.38%)。子任务2,句子级的词素细分,涵盖了3种语言的18,735个句子(捷克,英语,蒙古人),从3个团队中收到10个系统提交,最好的系统优于所有三种最先进的子字体化方法(BPE(BPE),Ulm,Morfessor2)绝对30.71%。为了促进错误分析并支持任何类型的未来研究,我们发布了所有系统预测,评估脚本和所有黄金标准数据集。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
变压器在图像处理领域取得了显着的成就。受到这一巨大成功的启发,变形金刚在3D点云处理中的应用引起了越来越多的关注。本文提出了一个新颖的点云表示学习网络,具有双重自我注意的3D点云变压器(3DPCT)和一个编码器解码器结构。具体而言,3DPCT具有一个层次编码器,该编码器包含两个用于分类任务的局部全球双重注意模块(分段任务的三个模块),每个模块都包含一个局部特征聚合(LFA)块和全局特征学习( GFL)块。 GFL块是双重的自我注意事项,既有在点上的自我注意力,又可以提高特征提取。此外,在LFA中,为更好地利用了提取的本地信息,设计了一种新颖的点自我发明模型,称为点斑点自我注意力(PPSA)。在分类和分割数据集上都评估了性能,其中包含合成数据和现实世界数据。广泛的实验表明,所提出的方法在分类和分割任务上都达到了最新的结果。
translated by 谷歌翻译
编码有序顺序约束的多目标优化模型为建模各种具有挑战性的问题提供了解决方案,包括编码偏好,建模课程和执行安全措施。最近开发的拓扑马尔可夫决策过程理论(TMDP)捕获了离散状态和行动的情况。在这项工作中,我们通过制定,证明和实施TMDP的策略梯度定理,将TMDP扩展到连续空间和未知过渡动力学。该理论结果可以创建使用功能近似器的TMDP学习算法,并可以推广现有的深入强化学习(DRL)方法。具体而言,我们通过简单的近端策略优化(PPO)算法的简单扩展为TMDPS中的策略梯度提供了一种新算法。我们在现实世界多目标导航问题上证明了这一点,并在模拟和真实机器人中对目标进行任意排序。
translated by 谷歌翻译
模型校准衡量预测的概率估计与真实性可能性之间的一致性。正确的模型校准对于高风险应用至关重要。不幸的是,现代深层神经网络的校准不佳,损害了可信度和可靠性。由于组织边界的自然不确定性,医疗图像分割尤其遭受了这种情况。这对他们的损失功能感到愤怒,这有利于多数级别的过度自信。我们用Domino(一种域感知的模型校准方法)解决了这些挑战,该方法利用了类标签之间的语义混淆性和分层相似性。我们的实验表明,在头部图像分割中,我们受多米诺骨牌校准的深神经网络优于非校准模型和最先进的形态学方法。我们的结果表明,与这些方法相比,我们的方法可以始终如一地实现更好的校准,更高的准确性和更快的推理时间,尤其是在稀有类别上。该性能归因于我们的域知觉正规化,以告知语义模型校准。这些发现表明,班级标签之间语义联系在建立深度学习模型的信心中的重要性。该框架有可能提高通用医学图像分割模型的可信度和可靠性。本文的代码可在以下网址获得:https://github.com/lab-smile/domino。
translated by 谷歌翻译
本文介绍了$ SE(3)$上的雷达射测方法,该方法利用了恒定的加速运动。运动先验被整合到滑动窗口优化方案中。我们使用Magnus扩展来准确整合运动,同时保持实时性能。此外,我们采用极地测量模型来更好地表示雷达检测不确定性。使用原型高分辨率雷达传感器的大型现实世界数据集评估我们的估计器。新的运动先验和测量模型明显地改善了相对于先前工作的恒定速度运动和笛卡尔测量模型,尤其是在滚动,音高和高度上。
translated by 谷歌翻译
研究过程自动化 - 对科学仪器,计算机,数据存储和其他资源的可靠,高效和可重复执行的可靠,高效和可重复执行,这是现代科学的基本要素。我们在此处报告Globus研究数据管理平台内的新服务,该服务可以将各种研究过程的规范作为可重复使用的动作集,流量以及在异质研究环境中执行此类流动的集合。为了以广泛的空间范围(例如,从科学仪器到远程数据中心)和时间范围(从几秒钟到几周),这些Globus自动化服务功能:1)云托管以可靠地执行长期持久的流量,尽管零星的失败,但这些Globus自动化服务功能:1) ; 2)声明性符号和可扩展的异步行动提供商API,用于定义和执行涉及任意资源的各种行动和流动规范; 3)授权授权机制,用于安全调用动作。这些服务允许研究人员将广泛的研究任务的管理外包和自动化为可靠,可扩展和安全的云平台。我们向Globus自动化服务提供用例
translated by 谷歌翻译
在最近的几项研究中已经显示了过度参数化在实现卓越概括性能方面的好处,证明了在实践中使用较大模型的趋势。然而,在强大的学习背景下,神经网络大小的影响尚未得到很好的研究。在这项工作中,我们发现,在大量错误标记的示例的存在下,将网络大小的增加超出某个点可能是有害的。特别是,当标签噪声增加时,最初是单调或“双重下降”测试损失曲线(W.R.T.网络宽度)变成U形或双U形曲线,这表明某些模型具有中等大小的模型实现了最佳的概括。我们观察到,当通过随机修剪通过密度控制网络大小时,观察到相似的测试损失行为。我们还通过偏置变化分解和理论上表征标签噪声塑造方差项的方式来仔细研究现象。即使采用最新的鲁棒方法,也可以观察到测试损失的类似行为,这表明限制网络大小可以进一步提高现有方法。最后,我们从经验上检查网络大小对学习函数平稳性的影响,并发现最初的大小和平滑度之间的负相关性是由标签噪声翻转的。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
创建和编辑3D对象的形状和颜色需要巨大的人类努力和专业知识。与3D接口中的直​​接操作相比,诸如草图和涂鸦之类的2D交互对用户通常更自然和直观。在本文中,我们提出了一个通用的多模式生成模型,该模型通过共享的潜在空间耦合2D模式和隐式3D表示。通过提出的模型,通过简单地通过潜在空间从特定的2D控制模式传播编辑,可以实现多功能3D生成和操纵。例如,通过绘制草图来编辑3D形状,通过绘画颜色在2D渲染上重新色彩,或者在一个或几个参考图像中生成特定类别的3D形状。与先前的作品不同,我们的模型不需要每个编辑任务进行重新训练或微调,并且在概念上也很简单,易于实现,对输入域移动的强大,并且可以在部分2D输入中进行多样化的重建。我们在灰度线草图和渲染颜色图像的两种代表性2D模态上评估了我们的框架,并证明我们的方法可以通过以下2D模态实现各种形状的操纵和生成任务。
translated by 谷歌翻译