由于复杂的腹部内形状和腹部器官之间的复杂形状和外观变化,从不同模态的CT成像中进行的准确且健壮的腹部多器官分割是一项具有挑战性的任务。在本文中,我们提出了一个具有分层空间特征调制的概率多器官分割网络,以捕获灵活的器官语义变体,并将学习的变体注入不同的特征图尺度,以进行指导分割。更具体地说,我们通过条件变异自动编码器设计一个输入分解模块,以在低维潜在空间和模型富有器官语义变化上学习器官特异性分布,该分布在输入图像上进行条件。 -NET解码器通过空间特征转换从层次上进行分层,该特征转换能够将变化转换为空间特征映射调制并指导细尺度分割的条件仿射转换参数。提出的方法对公开可用的腹部可用数据集进行了培训,并在其他两个开放数据集上进行了评估,即100个挑战/病理测试,从腹部腹部1K完全监督的腹部器官细分基准和90例TCIA+&BTCV数据集中进行了90例病例。使用这些数据集用于四个腹部器官,肾脏,脾脏和胰腺,肾脏分数提高了7.3%,胰腺的骰子得分提高了7.7%,而胰腺的骰子得分提高了7.3%,而胰腺的较高速度比强度快7倍,较高的7倍基线分割方法(NNUNET和COTR)。
translated by 谷歌翻译
对抗斑块攻击通过在指定的局部区域中注入对抗像素来误导神经网络。补丁攻击可以在各种任务中非常有效,并且可以通过附件(例如贴纸)在现实世界对象上实现。尽管攻击模式的多样性,但对抗斑块往往具有高质感,并且外观与自然图像不同。我们利用此属性,并在patchzero上进行patchzero,这是一种针对白色框对面补丁的任务不合时宜的防御。具体而言,我们的防御通过用平均像素值重新粉刷来检测对抗性像素和“零”斑块区域。我们将补丁检测问题作为语义分割任务提出,以便我们的模型可以推广到任何大小和形状的贴片。我们进一步设计了一个两阶段的对抗训练计划,以防止更强烈的适应性攻击。我们在图像分类(ImageNet,resisc45),对象检测(Pascal VOC)和视频分类(UCF101)数据集上彻底评估PatchZero。我们的方法可实现SOTA的稳健精度,而不会在良性表现中降解。
translated by 谷歌翻译
在非欧几里得空间上卷积成功之后,在有关图形的各种任务上也验证了相应的合并方法。但是,由于固定的压缩配额和逐步合并设计,这些层次池方法仍然遭受局部结构损害和次优问题的困扰。在这项工作的启发下,我们提出了一种层次的合并方法,即SEP解决这两个问题。具体而言,在不分配特定层的压缩配额的情况下,全局优化算法旨在生成一次集群分配矩阵以一次汇总。然后,我们介绍了在环和网格合成图的重建中先前方法中局部结构损害的例证。除SEP外,我​​们还将分别设计两个分类模型,分别用于图形分类和节点分类。结果表明,SEP在图形分类基准上优于最先进的图形合并方法,并在节点分类上获得了卓越的性能。
translated by 谷歌翻译
在许多收集的图像中,由于未经污染的图像对于许多下游多媒体任务至关重要,因此阴影删除引起了人们的关注。当前的方法考虑了阴影和非阴影区域的相同卷积操作,同时忽略了阴影区域和非阴影区域的颜色映射之间的巨大差距,从而导致重建图像的质量差和沉重的计算负担。为了解决这个问题,本文介绍了一个新颖的插件阴影感知动态卷积(SADC)模块,以使阴影区域与非阴影区域之间的相互依赖性解除。受到以下事实的启发:非阴影区域的颜色映射更易于学习,我们的SDC以计算上的轻巧卷积模块的方式处理非阴影区域,并以计算上的廉价方式处理,并使用更复杂的卷积模块恢复阴影区域图像重建的质量。鉴于非阴影区域通常包含更多背景颜色信息,我们进一步开发了一种新型的卷积内蒸馏损失,以增强从非阴影区域到阴影区域的信息流。在ISTD和SRD数据集上进行的广泛实验表明,我们的方法在许多最先进的情况下取得了更好的阴影去除性能。我们的代码可从https://github.com/xuyimin0926/sadc获得。
translated by 谷歌翻译
自然语言界面(NLIS)为用户提供了一种方便的方式来通过自然语言查询交互分析数据。然而,交互式数据分析是一种苛刻的过程,特别是对于新手数据分析师。从不同域探索大型和复杂的数据集时,数据分析师不一定有足够的关于数据和应用域的知识。它使他们无法有效地引起一系列查询并广泛导出理想的数据洞察力。在本文中,我们使用Step-Wise查询推荐模块开发NLI,以帮助用户选择适当的下一步探索操作。该系统采用数据驱动方法,以基于其查询日志生成用户兴趣的应用域的逐步语义相关和上下文感知的查询建议。此外,该系统可帮助用户将查询历史和结果组织成仪表板以传达发现的数据洞察力。通过比较用户学习,我们表明我们的系统可以促进比没有推荐模块的基线更有效和系统的数据分析过程。
translated by 谷歌翻译
随着智能机器人的广泛渗透,在多种领域,机器人中的同时定位和映射(SLAM)技术在社区中引起了不断的关注。然而,由于机器人的密集图形计算和机器人的有限计算能力之间的性能矛盾,在多个机器人上的合作仍然仍然具有挑战性。虽然传统的解决方案来到功能作为外部计算提供商的强大云服务器,但我们通过实际测量显示数据卸载中的显着通信开销可以防止其实际部署。为了解决这些挑战,本文将新兴边缘计算范例促进到多机器人SLAM中,提出了一种多机器人激光器SLAM系统,该系统专注于在机器人边缘云架构下加速映射施工过程。与传统的多机器人SLAM相比,在机器人上生成图形地图并完全合并它们在云上,recslam开发了一个分层地图融合技术,将机器人的原始数据指向用于实时融合的边缘服务器,然后发送到云端全球合并。为了优化整体管道,引入了一种有效的多机器人SLAM协作处理框架,以便自适应地优化针对异构边缘资源条件的机器人到边缘卸载,同时确保边缘服务器之间的工作量平衡。广泛的评估表明康复伍列可以通过最先进的延迟减少达到39%的处理延迟。此外,在真实场景中开发并部署了概念验证原型,以展示其有效性。
translated by 谷歌翻译
本文研究了一系列方面情绪分类(ASC)任务的持续学习(CL)。虽然已经提出了一些CL技术进行了文档情绪分类,但我们不知道任何CL在ASC上工作。逐步学习一系列ASC任务的CL系统应该解决以下两个问题:(1)将从以前任务的传输知识从以前的任务中学到的新任务,以帮助它学习更好的模型,并且(2)保持模型的性能以前的任务让他们没有忘记。本文提出了一种新颖的基于胶囊网络的模型,称为B-CL以解决这些问题。B-CL通过前向和后向知识传输显着提高了新任务和旧任务的ASC性能。通过广泛的实验证明了B-CL的有效性。
translated by 谷歌翻译
本文研究了一个特定CL设置中的一系列方面情绪分类(ASC)任务的持续学习(CL),称为域增量学习(DIL)。每个任务都来自不同的域或产品。DIL设置特别适合ASC,因为在测试中,系统不需要知道测试数据所属的任务/域。据我们所知,此环境尚未在ASC之前进行过研究。本文提出了一种名为CLASSIC的新型模型。关键新颖性是一种对比的持续学习方法,可以通过从旧任务到新任务的任务和知识蒸馏的知识转移,这消除了对测试中的任务ID的需求。实验结果表明了经典的高效性。
translated by 谷歌翻译
持续学习(CL)逐步学习一系列任务,其目标是实现两个主要目标:克服灾难性的遗忘(CF)并鼓励跨任务的知识转移(KT)。然而,大多数现有技术只关注克服CF并且没有鼓励KT的机制,因此在KT中不好做得很好。虽然有几篇论文试图处理CF和KT,但我们的实验表明,当任务没有太多的共享知识时,他们患有严重的CF。另一个观察是,大多数电流CL方法不使用预先训练的型号,但已经表明这种模型可以显着提高结束任务性能。例如,在自然语言处理中,微调伯特的预训练语言模型是最有效的方法之一。然而,对于CL,这种方法遭受严重的CF.一个有趣的问题是如何充分利用预先训练的电流模型。本文提出了一种名为CTR的新型模型来解决这些问题。我们的实验结果表明了CTR的有效性
translated by 谷歌翻译
注意机制在点云分析中发挥了越来越重要的作用,并且渠道注意是热点之一。通过这么多的频道信息,神经网络难以筛选有用的信道信息。因此,提出了一种自适应信道编码机制以在本文中捕获信道关系。它通过明确地编码其特征信道之间的相互依赖来提高网络生成的表示的质量。具体地,提出了一种通道 - 明智的卷积(通道-Chim)以自适应地学习坐标和特征之间的关系,以便编码信道。与流行的重量方案不同,本文提出的通道CONN实现了卷积操作的适应性,而不是简单地为频道分配不同的权重。对现有基准的广泛实验验证了我们的方法实现了艺术的状态。
translated by 谷歌翻译