众所周知,具有重新激活函数的完全连接的前馈神经网络可以表示的参数化函数家族恰好是一类有限的分段线性函数。鲜为人知的是,对于Relu神经网络的每个固定架构,参数空间都允许对称的正维空间,因此,在任何给定参数附近的局部功能维度都低于参数维度。在这项工作中,我们仔细地定义了功能维度的概念,表明它在Relu神经网络函数的参数空间中是不均匀的,并继续进行[14]和[5]中的调查 - 何时在功能维度实现其理论时最大。我们还研究了从参数空间到功能空间的实现图的商空间和纤维,提供了断开连接的纤维的示例,功能尺寸为非恒定剂的纤维以及对称组在其上进行非转换的纤维。
translated by 谷歌翻译
让F:R ^ N - > R是前馈RELU神经网络。众所周知,对于任何选择参数,F是连续和分段(仿射)线性的。我们为有系统调查提供了一些基础,用于系统的架构如何影响其可能的决策区域的几何和拓扑以进行二进制分类任务。在差分拓扑中顺利函数的经典进展之后,我们首先定义通用,横向relu神经网络的概念,并显示几乎所有的Relu网络都是通用的和横向的。然后,我们在F的域中定义了一个部分取向的线性1-复合物,并识别该复合物的属性,从而产生妨碍决策区域的有界连接分量的障碍物。我们使用该阻塞来证明具有单个隐藏的尺寸层(N + 1)的通用横向Relu网络F:R ^ N - > R的决策区域可以不具有多于一个有界连接的组件。
translated by 谷歌翻译
Eco-driving strategies have been shown to provide significant reductions in fuel consumption. This paper outlines an active driver assistance approach that uses a residual policy learning (RPL) agent trained to provide residual actions to default power train controllers while balancing fuel consumption against other driver-accommodation objectives. Using previous experiences, our RPL agent learns improved traction torque and gear shifting residual policies to adapt the operation of the powertrain to variations and uncertainties in the environment. For comparison, we consider a traditional reinforcement learning (RL) agent trained from scratch. Both agents employ the off-policy Maximum A Posteriori Policy Optimization algorithm with an actor-critic architecture. By implementing on a simulated commercial vehicle in various car-following scenarios, we find that the RPL agent quickly learns significantly improved policies compared to a baseline source policy but in some measures not as good as those eventually possible with the RL agent trained from scratch.
translated by 谷歌翻译
With the growing need to reduce energy consumption and greenhouse gas emissions, Eco-driving strategies provide a significant opportunity for additional fuel savings on top of other technological solutions being pursued in the transportation sector. In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance that trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience. The training scheme for the proposed RL agent uses an off-policy actor-critic architecture that iteratively does policy evaluation with a multi-step return and policy improvement with the maximum posteriori policy optimization algorithm for hybrid action spaces. The proposed Eco-driving RL agent is implemented on a commercial vehicle in car following traffic. It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
在本文中,我们将预处理技术应用于具有不同长度的多通道时间序列数据,我们称之为对齐问题,用于下游机器学习。多种原因可能发生多种渠道时间序列数据的未对准,原因有多种原因,例如丢失的数据,变化的采样率或不一致的收集时间。我们考虑从MIT SuperCloud高性能计算(HPC)中心收集的多渠道时间序列数据,其中不同的工作开始时间和HPC作业的运行时间不同,导致数据不对准。这种未对准使得为计算工作负载分类等任务构建AI/ML方法具有挑战性。在先前使用MIT SuperCloud数据集的监督分类工作的基础上,我们通过三种宽阔的低间接空间方法解决了对齐问题:从全职系列中抽样固定子集,在全职系列上执行摘要统计信息,并对系数进行取样。从映射到频域的时间序列。我们最佳性能模型的分类精度大于95%,以先前的方法对MIT SuperCloud数据集的多通道时间序列分类的表现优于5%。这些结果表明,我们的低间接费用方法与标准机器学习技术结合使用,能够达到高水平的分类准确性,并作为解决对齐问题(例如内核方法)的未来方法的基准。
translated by 谷歌翻译
物理受限的机器学习正在成为物理机器学习领域的重要主题。将物理限制纳入机器学习方法的最重要的优势之一是,由此产生的模型需要较少的数据训练。通过将物理规则纳入机器学习配方本身,预计预测将在物理上合理。高斯流程(GP)可能是小型数据集的机器学习中最常见的方法之一。在本文中,我们研究了在三个不同的材料数据集上限制具有单调性的GP公式的可能性,其中使用了一个实验和两个计算数据集。比较单调的GP与常规GP进行比较,该GP观察到后方差的显着降低。单调的GP在插值方面严格单调性,但是在外推方案中,随着训练数据集超越训练数据集,单调效应开始消失。与常规GP相比,GP对GP的单调性施加的精度为较小。单调的GP可能在数据稀缺和嘈杂的应用中最有用,并且由强有力的物理证据支持单调性。
translated by 谷歌翻译
尽管最近的研究集中在量化单词用法上以找到叙事情感弧的整体形状,但叙事中叙事的某些特征仍有待探索。在这里,我们通过找到单词用法中波动开始相关的文本长度来表征亚叙事的叙事时间尺度。我们代表30,000多个项目Gutenberg书籍作为时间序列使用OusiOmetrics,这是一个具有基本含义的功率破坏者框架,本身是对价价 - 宽松义务框架的重新解释,这些框架源自语义差异。我们使用经验模式分解将每本书的力量和危险时间序列分解为组成振荡模式和非振荡趋势的总和。通过将原始力量和危险时间序列的分解与从洗牌文本中得出的分解,我们发现较短的书籍仅显示出一般趋势,而较长的书籍除了一般趋势外,还具有波动,类似于子图在一个中的弧线中的弧线。总体叙事弧。这些波动通常有几千个单词的时期,无论书籍长度或库分类代码如何,但根据书的内容和结构而有所不同。我们的方法提供了一种数据驱动的denoisising方法,可用于各种长度的文本,与使用大型窗口尺寸的更传统的方法相反,该方法可能会无意中平滑相关信息,尤其是对于较短的文本而言。
translated by 谷歌翻译
鉴于HEP研究的核心,数据科学(DS)和机器学习(ML)在高能量物理学(HEP)中的作用增长良好和相关。此外,利用物理数据固有的对称性激发了物理信息的ML作为计算机科学研究的充满活力的子场。 HEP研究人员从广泛使用的材料中受益匪浅,可用于教育,培训和劳动力开发。他们还为这些材料做出了贡献,并为DS/ML相关的字段提供软件。物理部门越来越多地在DS,ML和物理学的交集上提供课程,通常使用HEP研究人员开发的课程,并涉及HEP中使用的开放软件和数据。在这份白皮书中,我们探讨了HEP研究与DS/ML教育之间的协同作用,讨论了此交叉路口的机会和挑战,并提出了将是互惠互利的社区活动。
translated by 谷歌翻译
基于相关的回声声音浮标收集的数据,这些浮标附带了热带海洋中的鱼聚集设备(DFAD),当前的研究应用机器学习方案来检查金枪鱼学校关联的时间趋势以漂移对象。使用二进制输出,将文献中通常使用的指标适应以下事实,即考虑到DFAD下的整个金枪鱼聚合。金枪鱼首次在25至43天之间进行了金枪鱼的中位时间,取决于海洋,最长的浸泡和殖民时间在太平洋中注册。金枪鱼学校的连续停留时间通常比连续缺勤时间(分别在5到7天和9天和11天之间)短,与以前的研究结果一致。使用回归输出,估计两个新型指标,即聚集时间和分解时间,以进一步了解聚集过程的对称性。在所有海洋中,金枪鱼聚合离开DFAD所需的时间并不比聚集形成所花费的时间大得多。讨论了这些结果在“生态陷阱”假设的背景下的价值,并提出了进一步的分析以丰富和利用该数据源。
translated by 谷歌翻译