深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
人工智能将人工智能融入临床工作流程需要可靠且强大的模型。鲁棒性的主要特征是可重复性。在不评估模型重复性的情况下,给予分类性能很多,导致在实践中不可用的模型开发。在这项工作中,我们评估了在同一访问期间获得的同一患者的四种模型类型的可重复性。我们研究了三个医学图像分析任务的二进制,多级,序数和回归模型的性能:宫颈癌筛查,乳房密度估计和早产分类视网膜病变。此外,我们评估采样蒙特卡罗辍学预测在分类性能和可重复性上的测试时间的影响。利用Monte Carlo预测,为二元,多级和序数模型的所有任务的重复性显着提高,导致平均减少95%协议限额17%的分数。
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Local patterns play an important role in statistical physics as well as in image processing. Two-dimensional ordinal patterns were studied by Ribeiro et al. who determined permutation entropy and complexity in order to classify paintings and images of liquid crystals. Here we find that the 2 by 2 patterns of neighboring pixels come in three types. The statistics of these types, expressed by two parameters, contains the relevant information to describe and distinguish textures. The parameters are most stable and informative for isotropic structures.
translated by 谷歌翻译
Many dialogue systems (DSs) lack characteristics humans have, such as emotion perception, factuality, and informativeness. Enhancing DSs with knowledge alleviates this problem, but, as many ways of doing so exist, keeping track of all proposed methods is difficult. Here, we present the first survey of knowledge-enhanced DSs. We define three categories of systems - internal, external, and hybrid - based on the knowledge they use. We survey the motivation for enhancing DSs with knowledge, used datasets, and methods for knowledge search, knowledge encoding, and knowledge incorporation. Finally, we propose how to improve existing systems based on theories from linguistics and cognitive science.
translated by 谷歌翻译
Attention-based multiple instance learning (AMIL) algorithms have proven to be successful in utilizing gigapixel whole-slide images (WSIs) for a variety of different computational pathology tasks such as outcome prediction and cancer subtyping problems. We extended an AMIL approach to the task of survival prediction by utilizing the classical Cox partial likelihood as a loss function, converting the AMIL model into a nonlinear proportional hazards model. We applied the model to tissue microarray (TMA) slides of 330 lung cancer patients. The results show that AMIL approaches can handle very small amounts of tissue from a TMA and reach similar C-index performance compared to established survival prediction methods trained with highly discriminative clinical factors such as age, cancer grade, and cancer stage
translated by 谷歌翻译
Nucleolar organizer regions (NORs) are parts of the DNA that are involved in RNA transcription. Due to the silver affinity of associated proteins, argyrophilic NORs (AgNORs) can be visualized using silver-based staining. The average number of AgNORs per nucleus has been shown to be a prognostic factor for predicting the outcome of many tumors. Since manual detection of AgNORs is laborious, automation is of high interest. We present a deep learning-based pipeline for automatically determining the AgNOR-score from histopathological sections. An additional annotation experiment was conducted with six pathologists to provide an independent performance evaluation of our approach. Across all raters and images, we found a mean squared error of 0.054 between the AgNOR- scores of the experts and those of the model, indicating that our approach offers performance comparable to humans.
translated by 谷歌翻译
Mitotic activity is key for the assessment of malignancy in many tumors. Moreover, it has been demonstrated that the proportion of abnormal mitosis to normal mitosis is of prognostic significance. Atypical mitotic figures (MF) can be identified morphologically as having segregation abnormalities of the chromatids. In this work, we perform, for the first time, automatic subtyping of mitotic figures into normal and atypical categories according to characteristic morphological appearances of the different phases of mitosis. Using the publicly available MIDOG21 and TUPAC16 breast cancer mitosis datasets, two experts blindly subtyped mitotic figures into five morphological categories. Further, we set up a state-of-the-art object detection pipeline extending the anchor-free FCOS approach with a gated hierarchical subclassification branch. Our labeling experiment indicated that subtyping of mitotic figures is a challenging task and prone to inter-rater disagreement, which we found in 24.89% of MF. Using the more diverse MIDOG21 dataset for training and TUPAC16 for testing, we reached a mean overall average precision score of 0.552, a ROC AUC score of 0.833 for atypical/normal MF and a mean class-averaged ROC-AUC score of 0.977 for discriminating the different phases of cells undergoing mitosis.
translated by 谷歌翻译
Modern machine learning models are often constructed taking into account multiple objectives, e.g., to minimize inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models and the approximation of the Pareto front is used to assess their performance. However, when estimating generalization performance of an approximation of a Pareto front found on a validation set by computing the performance of the individual models on the test set, models might no longer be Pareto-optimal. This makes it unclear how to measure performance. To resolve this, we provide a novel evaluation protocol that allows measuring the generalization performance of MHPO methods and to study its capabilities for comparing two optimization experiments.
translated by 谷歌翻译
The field of natural language processing (NLP) has grown over the last few years: conferences have become larger, we have published an incredible amount of papers, and state-of-the-art research has been implemented in a large variety of customer-facing products. However, this paper argues that we have been less successful than we should have been and reflects on where and how the field fails to tap its full potential. Specifically, we demonstrate that, in recent years, subpar time allocation has been a major obstacle for NLP research. We outline multiple concrete problems together with their negative consequences and, importantly, suggest remedies to improve the status quo. We hope that this paper will be a starting point for discussions around which common practices are -- or are not -- beneficial for NLP research.
translated by 谷歌翻译