We present a conceptually simple and intuitive method to calculate and to measure the dissimilarities among 2D shapes. Several methods to interpret and to visualize the resulting dissimilarity matrix are presented and compared.
translated by 谷歌翻译
自动伪标记是一种强大的工具,可以利用大量的连续未标记数据。在绩效要求非常大,数据集和手动标记的自动驾驶的关键安全应用中,它特别有吸引力。我们建议利用捕获的顺序性,通过培训多个教师在教师的设置中提高伪标记技术,每个教师都可以访问不同的时间信息。这套被称为一致性的教师比标准方法为学生培训提供了更高质量的伪标签。多个教师的输出通过新颖的伪标记信心引导的标准组合。我们的实验评估集中在城市驾驶场景中的3D点云域。我们显示了我们的方法的性能,应用于多个模型体系结构,其中包含3D语义分割任务和两个基准数据集上的3D对象检测。我们的方法仅使用20%的手动标签,优于某些完全监督的方法。对于培训数据,例如自行车和行人,很少出现在培训数据中的课程方面的特殊表现提升。我们的方法的实现可在https://github.com/ctu-vras/t-concord3d上公开获得。
translated by 谷歌翻译
本文提供了一个完整的管道,用于学习移动机器人的连续运动控制策略,只有可用的机器人 - 泰林相互作用的非差异物理模拟器才能提供。机器人的多模式状态估计也很复杂且难以模拟,因此我们同时学习了一个生成模型,该模型可以完善模拟器输出。我们提出了一个粗到精细的学习范式,其中粗略的运动计划与模仿学习和政策转移到真正的机器人。该政策通过生成模型共同优化。我们在一批实验中评估了现实世界平台上的方法。
translated by 谷歌翻译
本文提出了一种新颖的技术,该技术允许对具有不可构造轨道的车辆进行计算快速且足够合理的模拟。该方法基于我们称为接触表面运动的效果。提出了与其他几种模拟轨道车辆动力学模拟的方法的比较,目的是评估现成的方法或在通用机器人模拟器中使用最少努力的方法。提出的方法是使用开放动力学引擎的开源物理模拟器凉亭实现的。
translated by 谷歌翻译
Classically, the development of humanoid robots has been sequential and iterative. Such bottom-up design procedures rely heavily on intuition and are often biased by the designer's experience. Exploiting the non-linear coupled design space of robots is non-trivial and requires a systematic procedure for exploration. We adopt the top-down design strategy, the V-model, used in automotive and aerospace industries. Our co-design approach identifies non-intuitive designs from within the design space and obtains the maximum permissible range of the design variables as a solution space, to physically realise the obtained design. We show that by constructing the solution space, one can (1) decompose higher-level requirements onto sub-system-level requirements with tolerance, alleviating the "chicken-or-egg" problem during the design process, (2) decouple the robot's morphology from its controller, enabling greater design flexibility, (3) obtain independent sub-system level requirements, reducing the development time by parallelising the development process.
translated by 谷歌翻译
This paper describes a simple yet efficient repetition-based modular system for speeding up air-traffic controllers (ATCos) training. E.g., a human pilot is still required in EUROCONTROL's ESCAPE lite simulator (see https://www.eurocontrol.int/simulator/escape) during ATCo training. However, this need can be substituted by an automatic system that could act as a pilot. In this paper, we aim to develop and integrate a pseudo-pilot agent into the ATCo training pipeline by merging diverse artificial intelligence (AI) powered modules. The system understands the voice communications issued by the ATCo, and, in turn, it generates a spoken prompt that follows the pilot's phraseology to the initial communication. Our system mainly relies on open-source AI tools and air traffic control (ATC) databases, thus, proving its simplicity and ease of replicability. The overall pipeline is composed of the following: (1) a submodule that receives and pre-processes the input stream of raw audio, (2) an automatic speech recognition (ASR) system that transforms audio into a sequence of words; (3) a high-level ATC-related entity parser, which extracts relevant information from the communication, i.e., callsigns and commands, and finally, (4) a speech synthesizer submodule that generates responses based on the high-level ATC entities previously extracted. Overall, we show that this system could pave the way toward developing a real proof-of-concept pseudo-pilot system. Hence, speeding up the training of ATCos while drastically reducing its overall cost.
translated by 谷歌翻译
The need for data privacy and security -- enforced through increasingly strict data protection regulations -- renders the use of healthcare data for machine learning difficult. In particular, the transfer of data between different hospitals is often not permissible and thus cross-site pooling of data not an option. The Personal Health Train (PHT) paradigm proposed within the GO-FAIR initiative implements an 'algorithm to the data' paradigm that ensures that distributed data can be accessed for analysis without transferring any sensitive data. We present PHT-meDIC, a productively deployed open-source implementation of the PHT concept. Containerization allows us to easily deploy even complex data analysis pipelines (e.g, genomics, image analysis) across multiple sites in a secure and scalable manner. We discuss the underlying technological concepts, security models, and governance processes. The implementation has been successfully applied to distributed analyses of large-scale data, including applications of deep neural networks to medical image data.
translated by 谷歌翻译
This paper explores semi-supervised training for sequence tasks, such as Optical Character Recognition or Automatic Speech Recognition. We propose a novel loss function $\unicode{x2013}$ SoftCTC $\unicode{x2013}$ which is an extension of CTC allowing to consider multiple transcription variants at the same time. This allows to omit the confidence based filtering step which is otherwise a crucial component of pseudo-labeling approaches to semi-supervised learning. We demonstrate the effectiveness of our method on a challenging handwriting recognition task and conclude that SoftCTC matches the performance of a finely-tuned filtering based pipeline. We also evaluated SoftCTC in terms of computational efficiency, concluding that it is significantly more efficient than a na\"ive CTC-based approach for training on multiple transcription variants, and we make our GPU implementation public.
translated by 谷歌翻译
Because of their close relationship with humans, non-human apes (chimpanzees, bonobos, gorillas, orangutans, and gibbons, including siamangs) are of great scientific interest. The goal of understanding their complex behavior would be greatly advanced by the ability to perform video-based pose tracking. Tracking, however, requires high-quality annotated datasets of ape photographs. Here we present OpenApePose, a new public dataset of 71,868 photographs, annotated with 16 body landmarks, of six ape species in naturalistic contexts. We show that a standard deep net (HRNet-W48) trained on ape photos can reliably track out-of-sample ape photos better than networks trained on monkeys (specifically, the OpenMonkeyPose dataset) and on humans (COCO) can. This trained network can track apes almost as well as the other networks can track their respective taxa, and models trained without one of the six ape species can track the held out species better than the monkey and human models can. Ultimately, the results of our analyses highlight the importance of large specialized databases for animal tracking systems and confirm the utility of our new ape database.
translated by 谷歌翻译
Air pollution is a crucial issue affecting human health and livelihoods, as well as one of the barriers to economic and social growth. Forecasting air quality has become an increasingly important endeavor with significant social impacts, especially in emerging countries like China. In this paper, we present a novel Transformer architecture termed AirFormer to collectively predict nationwide air quality in China, with an unprecedented fine spatial granularity covering thousands of locations. AirFormer decouples the learning process into two stages -- 1) a bottom-up deterministic stage that contains two new types of self-attention mechanisms to efficiently learn spatio-temporal representations; 2) a top-down stochastic stage with latent variables to capture the intrinsic uncertainty of air quality data. We evaluate AirFormer with 4-year data from 1,085 stations in the Chinese Mainland. Compared to the state-of-the-art model, AirFormer reduces prediction errors by 5%~8% on 72-hour future predictions. Our source code is available at https://github.com/yoshall/airformer.
translated by 谷歌翻译