Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Large-scale pre-trained language models (PLMs) bring new opportunities to challenge problems, especially those that need high-level intelligence, such as the math word problem (MWPs). However, directly applying existing PLMs to MWPs can fail as the generation process lacks sufficient supervision and thus lacks fast adaptivity as humans. We notice that human reasoning has a dual reasoning framework that consists of an immediate reaction system (system 1) and a delicate reasoning system (system 2), where the entire reasoning is determined by their interaction. This inspires us to develop a cooperative reasoning-induced PLM for solving MWPs, called Cooperative Reasoning (CoRe), resulting in a human-like reasoning architecture with system 1 as the generator and system 2 as the verifier. In our approach, the generator is responsible for generating reasoning paths, and the verifiers are used to supervise the evaluation in order to obtain reliable feedback for the generator. We evaluate our CoRe framework on several mathematical reasoning datasets and achieve decent improvement over state-of-the-art methods, up to 9.8% increase over best baselines.
translated by 谷歌翻译
如今,基础模型已成为人工智能中的基本基础设施之一,铺平了通往通用情报的方式。但是,现实提出了两个紧急挑战:现有的基础模型由英语社区主导;用户通常会获得有限的资源,因此不能总是使用基础模型。为了支持中文社区的发展,我们介绍了一个名为Fengshenbang的开源项目,该项目由认知计算与自然语言研究中心(CCNL)领导。我们的项目具有全面的功能,包括大型预培训模型,用户友好的API,基准,数据集等。我们将所有这些都包装在三个子项目中:风水次模型,风水框架和狂热基准。 Fengshenbang的开源路线图旨在重新评估中国预培训的大型大型模型的开源社区,促使整个中国大型模型社区的发展。我们还希望构建一个以用户为中心的开源生态系统,以允许个人访问所需的模型以匹配其计算资源。此外,我们邀请公司,大学和研究机构与我们合作建立大型开源模型的生态系统。我们希望这个项目将成为中国认知情报的基础。
translated by 谷歌翻译
我们提出了一种简单而有效的自我训练方法,称为Stad,用于低资源关系提取。该方法首先根据教师模型所预测的概率将自动注释的实例分为两组:自信实例和不确定实例。与大多数以前的研究相反,主要的研究主要仅利用自信实例进行自我训练,我们利用了不确定的实例。为此,我们提出了一种从不确定实例中识别模棱两可但有用的实例的方法,然后将关系分为每个模棱两可的实例中的候选标签集和负标签集。接下来,我们建议对模棱两可的实例的负标签集和对自信实例的积极培训方法提出一种设定的培训方法。最后,提出了一种联合培训方法来在所有数据上构建最终关系提取系统。在两个广泛使用的数据集SEMEVAL2010任务8上进行的实验结果和低资源设置的重新攻击表明,这种新的自我训练方法确实在与几个竞争性自我训练系统相比时确实取得了显着和一致的改进。代码可在https://github.com/jjyunlp/stad上公开获取
translated by 谷歌翻译
雷达和摄像机多模式融合的环境感知对于自动驾驶至关重要,以提高准确性,完整性和稳健性。本文着重于如何利用毫米波(MMW)雷达和相机传感器融合进行3D对象检测。提出了一种新的方法,该方法在提出了更好的特征表示形式下意识到在鸟眼视图(BEV)下的特征级融合。首先,将雷达特征通过时间积累增强,并发送到时间空间编码器以进行雷达特征提取。同时,通过图像骨干和颈部模型获得了适应各种空间尺度的多尺度图像2D特征。然后,将图像功能转换为使用设计的视图变压器。此外,这项工作将多模式特征与称为点融合和ROI融合的两阶段融合模型融合在一起。最后,检测头会回归对象类别和3D位置。实验结果表明,所提出的方法在最重要的检测指标,平均平均精度(MAP)和NUSCENES检测分数(NDS)下实现了最先进的性能。
translated by 谷歌翻译
该报告描述了一个预先训练的语言模型Erlangshen,其倾向校正损失是线索语义匹配挑战中的第一名。在预训练阶段,我们基于掩盖语言建模(MLM)的知识构建动态掩盖策略,并具有整个单词掩盖。此外,通过观察数据集的特定结构,预先训练的Erlangshen在微调阶段应用了经倾向校正的损失(PCL)。总体而言,我们在F1得分中获得72.54分,测试集的准确性为78.90分。我们的代码可在以下网址公开获取:https://github.com/idea-ccnl/fengshenbang-lm/tree/hf-ds/fengshen/examples/clue_sim。
translated by 谷歌翻译
动物姿势估计和跟踪(APT)是从一系列视频帧中检测和跟踪动物关键的基本任务。以前与动物有关的数据集专注于动物跟踪或单帧动物姿势估计,而从未在这两个方面上进行。缺乏APT数据集​​阻碍了基于视频的动物姿势估计和跟踪方法的开发和评估,限制了现实世界中的应用,例如了解野生动物保护中的动物行为。为了填补这一空白,我们迈出了第一步,并提出了APT-36K,即第一个用于动物姿势估计和跟踪的大规模基准。具体而言,APT-36K由2,400个视频剪辑组成,并从30种动物物种中收集并过滤,每个视频为15帧,总共产生36,000帧。在手动注释和仔细的双重检查之后,为所有动物实例提供了高质量的关键点和跟踪注释。基于APT-36K,我们在以下三个曲目上基准了几个代表性模型:(1)在内部和域间传输学习设置下,在单个框架上进行监督的动物姿势估计,(2)未见的种间域域内概括测试动物,(3)动物跟踪的动物姿势估计。根据实验结果,我们获得了一些经验见解,并表明APT-36K提供了有价值的动物姿势估计和跟踪基准,为未来的研究提供了新的挑战和机会。该代码和数据集将在https://github.com/pandorgan/apt-36k上公​​开提供。
translated by 谷歌翻译
Fairness has been taken as a critical metric in machine learning models, which is considered as an important component of trustworthy machine learning. In this paper, we focus on obtaining fairness for popular link prediction tasks, which are measured by dyadic fairness. A novel pre-processing methodology is proposed to establish dyadic fairness through data repairing based on optimal transport theory. With the well-established theoretical connection between the dyadic fairness for graph link prediction and a conditional distribution alignment problem, the dyadic repairing scheme can be equivalently transformed into a conditional distribution alignment problem. Furthermore, an optimal transport-based dyadic fairness algorithm called DyadicOT is obtained by efficiently solving the alignment problem, satisfying flexibility and unambiguity requirements. The proposed DyadicOT algorithm shows superior results in obtaining fairness compared to other fairness methods on two benchmark graph datasets.
translated by 谷歌翻译
少量样本压缩旨在将大冗余模型压缩成一个小型紧凑型,只有少量样品。如果我们的微调模型直接具有这些限制的样本,模型将容易受到过度装备,并且几乎没有学习。因此,先前的方法优化压缩模型逐层,并尝试使每个层具有与教师模型中的相应层相同的输出,这是麻烦的。在本文中,我们提出了一个名为mimicking的新框架,然后替换(mir),以实现几个样本压缩,这首先促使修剪模型输出与教师在倒数第二层中的相同功能,然后在倒数第二个之前替换教师的图层调整良好的紧凑型。与以前的层面重建方法不同,我们的MIR完全优化整个网络,这不仅简单而有效,而且还无人驾驶和一般。MIR优于以前的余量。代码即将推出。
translated by 谷歌翻译
最小化隐私泄漏,同时确保数据实用程序是隐私保留数据发布任务中数据持有者的关键问题。大多数现有研究仅涉及一种类型的数据和度假村,以实现一个模糊的方法,\例如,混淆或泛化,以实现隐私式实用权衡,这是保护现实生活的异构数据不足,并且难以捍卫 - 生长机器学习的推论攻击。这项工作在采用异构数据保护的泛化和混淆操作时,对隐私保留数据发布进行试验研究。为此,我们首先提出了新的隐私和实用程序量化措施,并制定了混合隐私保留数据模糊问题,以解释泛化和混淆的联合效力。然后,我们设计了一种名为HyobScure的新型混合保护机制,交叉迭代优化了在某种实用程序保证下的最大隐私保护的泛化和混淆操作。理论上还提供了迭代过程的收敛性和障碍的隐私泄漏。广泛的实验表明,在不同场景下面对各种推理攻击时,横冲气度显着优于各种最先进的基线方法。 HyoBScure还线性地缩放到数据大小,并使用不同的关键参数稳健行为。
translated by 谷歌翻译