在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
社交媒体在现代社会中尤其是在西方世界中的政策制定方面已经变得极其影响力(例如,48%的欧洲人每天或几乎每天都使用社交媒体)。 Twitter之类的平台使用户可以关注政客,从而使公民更多地参与政治讨论。同样,政客们使用Twitter来表达他们的观点,在当前主题上进行辩论,并促进其政治议程,以影响选民行为。先前的研究表明,传达负面情绪的推文可能会更频繁地转发。在本文中,我们试图分析来自不同国家的政客的推文,并探索他们的推文是否遵循相同的趋势。利用最先进的预训练的语言模型,我们对从希腊,西班牙和英国的成千上万的推文进行了情感分析,包括权威的行政部门。我们通过系统地探索和分析有影响力和不流行的推文之间的差异来实现这一目标。我们的分析表明,政治家的负面推文更广泛地传播,尤其是在最近的时代,并突出了情感和受欢迎程度相交的有趣趋势。
translated by 谷歌翻译
数据增强技术广泛用于通过解决类别不平衡问题和数据稀疏性来增强机器学习模型的性能。已显示最先进的生成语言模型在不同的NLP任务中提供了显着的增益。但是,它们对几张拍摄设置中的文本分类任务的数据增强的适用性尚未完全探索,特别是对于专门域。在本文中,我们利用GPT-2(Radford A等,2019)来产生人工训练实例,以提高分类性能。我们的目的是分析种子训练示例的选择过程对GPT生成的样品的质量以及因此分类器性能的影响。我们使用几种种子选择策略进行实验,其中包括利用课程分层结构和域专家选择。我们的结果表明,少数标签实例中的微调GPT-2导致一致的分类改进和优于竞争性基线。最后,我们展示通过域专家选择指导这一过程可能会导致进一步的改进,这开辟了有趣的研究途径,用于结合生成模型和主动学习。
translated by 谷歌翻译
训练有素的神经网络的性能至关重要。加上深度学习模型的不断增长的规模,这种观察激发了对学习稀疏模型的广泛研究。在这项工作中,我们专注于控制稀疏学习时的稀疏水平的任务。基于稀疏性惩罚的现有方法涉及对罚款因素的昂贵反复试验调整,因此缺乏直接控制所得模型的稀疏性。作为响应,我们采用了一个约束的公式:使用Louizos等人提出的栅极机制。 (2018年),我们制定了一个受约束的优化问题,其中稀疏以训练目标和所需的稀疏目标以端到端的方式指导。使用WIDERESNET和RESNET {18,50}模型进行了CIFAR-10/100,Tinyimagenet和ImageNet的实验验证了我们的提案的有效性,并证明我们可以可靠地实现预定的稀疏目标,而不会损害预测性能。
translated by 谷歌翻译
社交媒体有可能提供有关紧急情况和突然事件的及时信息。但是,在每天发布的数百万帖子中找到相关信息可能很困难,并且开发数据分析项目通常需要时间和技术技能。这项研究提出了一种为分析社交媒体的灵活支持的方法,尤其是在紧急情况下。引入了可以采用社交媒体分析的不同用例,并讨论了从大量帖子中检索信息的挑战。重点是分析社交媒体帖子中包含的图像和文本,以及一组自动数据处理工具,用于过滤,分类和使用人类的方法来支持数据分析师的内容。这种支持包括配置自动化工具的反馈和建议,以及众包收集公民的投入。通过讨论Crowd4SDG H2020欧洲项目中开发的三个案例研究来验证结果。
translated by 谷歌翻译
糖尿病性视网膜病变(DR)是发达国家工人衰老人群中失明的主要原因之一,这是由于糖尿病的副作用降低了视网膜的血液供应。深度神经网络已被广泛用于自动化系统中,以在眼底图像上进行DR分类。但是,这些模型需要大量带注释的图像。在医疗领域,专家的注释昂贵,乏味且耗时。结果,提供了有限数量的注释图像。本文提出了一种半监督的方法,该方法利用未标记的图像和标记的图像来训练一种检测糖尿病性视网膜病的模型。提出的方法通过自我监督的学习使用无监督的预告片,然后使用一小部分标记的图像和知识蒸馏来监督微调,以提高分类任务的性能。在Eyepacs测试和Messidor-2数据集中评估了此方法,仅使用2%的Eyepacs列车标记图像,分别使用0.94和0.89 AUC。
translated by 谷歌翻译
由于大规模数据集的可用性,通常在特定位置和良好的天气条件下收集的大规模数据集,近年来,自动驾驶汽车的感知进展已加速。然而,为了达到高安全要求,这些感知系统必须在包括雪和雨在内的各种天气条件下进行稳健运行。在本文中,我们提出了一个新数据集,以通过新颖的数据收集过程启用强大的自动驾驶 - 在不同场景(Urban,Highway,乡村,校园),天气,雪,雨,阳光下,沿着15公里的路线反复记录数据),时间(白天/晚上)以及交通状况(行人,骑自行车的人和汽车)。该数据集包括来自摄像机和激光雷达传感器的图像和点云,以及高精度GPS/ins以在跨路线上建立对应关系。该数据集包括使用Amodal掩码捕获部分遮挡和3D边界框的道路和对象注释。我们通过分析基准在道路和对象,深度估计和3D对象检测中的性能来证明该数据集的独特性。重复的路线为对象发现,持续学习和异常检测打开了新的研究方向。链接到ITHACA365:https://ithaca365.mae.cornell.edu/
translated by 谷歌翻译
我们介绍了仇恨言论推文的Hateval语料库(Basile等,2019年)的丰富,旨在促进自动化的反叙事一代。与以前的工作相比(Chung etal。2019),手动书面反叙事与推文有关。但是,仅此信息似乎不足以获得反叙事生成的令人满意的语言模型。这就是为什么我们还根据Wagemanns(2016)提供了带有争论性信息的注释推文,我们认为可以帮助建立令人信服和有效的反叙事,以针对特定群体进行仇恨言论。我们讨论了这种注释过程的充分和困难,并提出了几个基线以自动检测带注释的元素。初步结果表明,自动注释者会靠近人类注释者来检测论证的某些方面,而其他人仅达到低或中等水平的通知者一致性。
translated by 谷歌翻译
本文简要审查了不同的空间填充曲线(SFC),并提出了新的曲线。一个世纪已经过去了这类曲线的建立,从那以后,它们在计算机科学中被发现有用,尤其是在数据存储和由于它们的聚类特性而引起的索引,成为希尔伯特曲线是分形家族中最知名的成员。本文介绍了所提出的阿兹台克曲线,具有与希尔伯特曲线相似的特征,并伴随着语法描述。它产生了创建双维簇的可能性,不适合希尔伯特(Hilbert)和佩恩诺(Peano)曲线。除此之外,还实施了在压缩传感范围上应用的情况,其中希尔伯特曲线的使用与阿兹台克曲线形成鲜明对比,具有相似的性能,并将AZTEC曲线定位为可行的,并将其定位为可行的新替代方法使用SFC的应用程序。
translated by 谷歌翻译
给定的用户输入的自动生成平面图在建筑设计中具有很大的潜力,最近在计算机视觉社区中探索了。但是,大多数现有方法以栅格化图像格式合成平面图,这些图像很难编辑或自定义。在本文中,我们旨在将平面图合成为1-D向量的序列,从而简化用户的互动和设计自定义。为了产生高保真矢量化的平面图,我们提出了一个新颖的两阶段框架,包括草稿阶段和多轮精炼阶段。在第一阶段,我们使用图形卷积网络(GCN)编码用户的房间连接图输入,然后应用自回归变压器网络以生成初始平面图。为了抛光最初的设计并生成更具视觉吸引力的平面图,我们进一步提出了一个由GCN和变压器网络组成的新颖的全景精炼网络(PRN)。 PRN将初始生成的序列作为输入,并完善了平面图设计,同时鼓励我们提出的几何损失来鼓励正确的房间连接。我们已经对现实世界平面图数据集进行了广泛的实验,结果表明,我们的方法在不同的设置和评估指标下实现了最先进的性能。
translated by 谷歌翻译