神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
终身学习旨在学习一系列任务,而无需忘记先前获得的知识。但是,由于隐私或版权原因,涉及的培训数据可能不是终身合法的。例如,在实际情况下,模型所有者可能希望不时启用或禁用特定任务或特定样本的知识。不幸的是,这种灵活的对知识转移的灵活控制在以前的增量或减少学习方法中,即使在问题设定的水平上也被忽略了。在本文中,我们探索了一种新颖的学习方案,称为学习,可回收遗忘(LIRF),该方案明确处理任务或特定于样本的知识去除和恢复。具体而言,LIRF带来了两个创新的方案,即知识存款和撤回,这使用户指定的知识从预先训练的网络中隔离开来,并在必要时将其注入。在知识存款过程中,从目标网络中提取了指定的知识并存储在存款模块中,同时保留了目标网络的不敏感或一般知识,并进一步增强。在知识提取期间,将带走知识添加回目标网络。存款和提取过程仅需在删除数据上对几个时期进行填充时期,从而确保数据和时间效率。我们在几个数据集上进行实验,并证明所提出的LIRF策略具有令人振奋的概括能力。
translated by 谷歌翻译
示例引导图像生成的一个关键挑战在于在输入图像和引导图像之间建立细粒度的对应关系。尽管结果有令人鼓舞,但先前的方法还是依赖于对计算每点匹配的密集关注的依赖。在本文中,我们提出了一个动态稀疏注意的变压器模型,称为动态稀疏变压器(Dynast),以实现具有优惠效率的优质匹配。我们方法的核心是一个新颖的动态注意事项单元,致力于涵盖最佳代币数量的差异。具体而言,Dynast利用变压器结构的多层性质,并以级联的方式执行动态注意力方案,以完善匹配结果并合成视觉上令人愉悦的输出。此外,我们还为Dynast引入了一个统一的培训目标,使其成为监督和无监督场景的广泛参考图像翻译框架。对三种应用,姿势引导的人形象产生,基于边缘的面部合成以及未变形的图像样式转移的广泛实验表明,朝代在本地细节中实现了卓越的性能,超过了最新的技术,同时降低了计算成本。我们的代码可从https://github.com/huage001/dynast获得
translated by 谷歌翻译
在本文中,我们探讨了一项新颖而雄心勃勃的知识转移任务,称为知识分解〜(KF)。 KF的核心思想在于知识的模块化和组装性:鉴于验证的网络模型作为输入,KF旨在将其分解为多个因素网络,每个网络仅处理专用任务,并从源中维护特定于任务的知识,并从源网络。此类因素网络是由任务分开的,可以直接组装,而无需进行任何微调,以产生更有能力的组合任务网络。换句话说,因子网络用作像乐高积木一样的构建块,使我们能够以插件的方式构建自定义网络。具体而言,每个因素网络都包含两个模块,这是一个通用知识模块,该模块是任务无关并由所有因素网络共享的模块,以及一个专门针对因子网络本身的任务特定模块。我们介绍了一个信息理论目标,即Infomax-Bottleneck〜(IMB),以通过优化学习表示和输入之间的相互信息来执行KF。各种基准的实验表明,派生因子网络不仅在专用任务,而且还可以分离,同时享有更好的解释性和模块化。此外,学到的公共知识表示会为转移学习带来令人印象深刻的结果。
translated by 谷歌翻译
知识蒸馏(KD)最近被出现为将学生预先接受教师模型转移到轻量级学生的知识的强大战略,并在广泛的应用方面表现出了前所未有的成功。尽管结果令人鼓舞的结果,但KD流程本身对网络所有权保护构成了潜在的威胁,因为网络中包含的知识可以毫不费力地蒸馏,因此暴露于恶意用户。在本文中,我们提出了一种新颖的框架,称为安全蒸馏盒(SDB),允许我们将预先训练的模型包装在虚拟盒中用于知识产权保护。具体地,SDB将包装模型的推理能力保留给所有用户,但从未经授权的用户中排除KD。另一方面,对于授权用户,SDB执行知识增强方案,以加强KD性能和学生模型的结果。换句话说,所有用户都可以在SDB中使用模型进行推断,但只有授权用户只能从模型中访问KD。所提出的SDB对模型架构不对限制,并且可以易于作为即插即用解决方案,以保护预先训练的网络的所有权。各个数据集和架构的实验表明,对于SDB,未经授权的KD的性能显着下降,而授权的销量会增强,展示SDB的有效性。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译