In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译
Recently, domain-specific PLMs have been proposed to boost the task performance of specific domains (e.g., biomedical and computer science) by continuing to pre-train general PLMs with domain-specific corpora. However, this Domain-Adaptive Pre-Training (DAPT; Gururangan et al. (2020)) tends to forget the previous general knowledge acquired by general PLMs, which leads to a catastrophic forgetting phenomenon and sub-optimal performance. To alleviate this problem, we propose a new framework of General Memory Augmented Pre-trained Language Model (G-MAP), which augments the domain-specific PLM by a memory representation built from the frozen general PLM without losing any general knowledge. Specifically, we propose a new memory-augmented layer, and based on it, different augmented strategies are explored to build the memory representation and then adaptively fuse it into the domain-specific PLM. We demonstrate the effectiveness of G-MAP on various domains (biomedical and computer science publications, news, and reviews) and different kinds (text classification, QA, NER) of tasks, and the extensive results show that the proposed G-MAP can achieve SOTA results on all tasks.
translated by 谷歌翻译
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
translated by 谷歌翻译
Recent studies have shown the impressive efficacy of counterfactually augmented data (CAD) for reducing NLU models' reliance on spurious features and improving their generalizability. However, current methods still heavily rely on human efforts or task-specific designs to generate counterfactuals, thereby impeding CAD's applicability to a broad range of NLU tasks. In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework. AutoCAD first leverages a classifier to unsupervisedly identify rationales as spans to be intervened, which disentangles spurious and causal features. Then, AutoCAD performs controllable generation enhanced by unlikelihood training to produce diverse counterfactuals. Extensive evaluations on multiple out-of-domain and challenge benchmarks demonstrate that AutoCAD consistently and significantly boosts the out-of-distribution performance of powerful pre-trained models across different NLU tasks, which is comparable or even better than previous state-of-the-art human-in-the-loop or task-specific CAD methods. The code is publicly available at https://github.com/thu-coai/AutoCAD.
translated by 谷歌翻译
Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
translated by 谷歌翻译
In recent years, Multi-Agent Path Finding (MAPF) has attracted attention from the fields of both Operations Research (OR) and Reinforcement Learning (RL). However, in the 2021 Flatland3 Challenge, a competition on MAPF, the best RL method scored only 27.9, far less than the best OR method. This paper proposes a new RL solution to Flatland3 Challenge, which scores 125.3, several times higher than the best RL solution before. We creatively apply a novel network architecture, TreeLSTM, to MAPF in our solution. Together with several other RL techniques, including reward shaping, multiple-phase training, and centralized control, our solution is comparable to the top 2-3 OR methods.
translated by 谷歌翻译
对心理健康支持的需求不断增长,强调了对话代理在全球和中国作为人类支持者的重要性。这些代理可以增加可用性并降低心理健康支持的相对成本。提供的支持可以分为两种主要类型:认知和情感支持。关于该主题的现有工作主要集中在采用认知行为疗法(CBT)原理的构造药物上。此类代理根据预定义的模板和练习来运行,以提供认知支持。但是,使用此类药物对情绪支持的研究是有限的。此外,大多数建设的代理商都以英语运作,强调了在中国进行此类研究的重要性。在这项研究中,我们分析了表情符疾病在减少精神痛苦症状方面的有效性。 Emohaa是一种对话剂,通过基于CBT的练习和指导性对话提供认知支持。它还通过使用户能够发泄所需的情绪问题来支持情感上的支持。该研究包括134名参与者,分为三组:Emohaa(基于CBT),Emohaa(Full)和控制。实验结果表明,与对照组相比,使用Emohaa的参与者在精神困扰症状方面的改善得到了更大的改善。我们还发现,添加情感支持剂对这种改善,主要是抑郁和失眠有互补的影响。根据获得的结果和参与者对平台的满意,我们得出结论,Emohaa是减少精神困扰的实用和有效工具。
translated by 谷歌翻译
本文提出了Salenet-端到端卷积神经网络(CNN),用于使用前额叶脑电图(EEG)进行持续注意水平评估。提出了一种偏置驱动的修剪方法,以及小组卷积,全局平均池(GAP),接近零的修剪,重量聚类和模型压缩的量化,达到183.11x的总压缩比。在这项工作中,压缩的分配器在记录的6个受试者EEG数据库上获得了最新的主题无关的持续注意力分类精度为84.2%。该沙发在ARTIX-7 FPGA上实施,竞争功耗为0.11 W,能源效率为8.19 GOPS/W。
translated by 谷歌翻译
分布式概括(OOD)都是关于对环境变化的学习不变性。如果每个类中的上下文分布均匀分布,则OOD将是微不足道的,因为由于基本原则,可以轻松地删除上下文:类是上下文不变的。但是,收集这种平衡的数据集是不切实际的。学习不平衡的数据使模型偏见对上下文,从而伤害了OOD。因此,OOD的关键是上下文平衡。我们认为,在先前工作中广泛采用的假设,可以直接从偏见的类预测中注释或估算上下文偏差,从而使上下文不完整甚至不正确。相比之下,我们指出了上述原则的另一面:上下文对于类也不变,这激励我们将类(已经被标记为已标记的)视为不同环境以解决上下文偏见(没有上下文标签)。我们通过最大程度地减少阶级样本相似性的对比损失,同时确保这种相似性在所有类别中不变,从而实现这一想法。在具有各种上下文偏见和域间隙的基准测试中,我们表明,配备了我们上下文估计的简单基于重新加权的分类器实现了最新的性能。我们在https://github.com/simpleshinobu/irmcon上提供了附录中的理论理由和代码。
translated by 谷歌翻译
数据驱动的机器学习方法有可能显着加速材料设计的速率,而不是传统的人类指导方法。这些方法将有助于识别或在生成模型的情况下,甚至可以创建具有一组指定功能特性的新型材料结构,然后在实验室中合成或隔离。对于晶体结构的产生,关键的瓶颈在于为机器学习模型开发合适的原子结构指纹或表示,类似于分子生成中使用的基于图或微笑的表示。但是,找到对翻译,旋转和排列不变的数据有效表示,而笛卡尔原子坐标仍然是可逆的,仍然是一个持续的挑战。在这里,我们通过采用具有所需的不变的现有的不可糊化表示并开发算法来通过使用自动分化的基于梯度的优化来重建原子坐标,从而提出了一种替代方法。然后,可以将其与生成机器学习模型耦合,该模型在表示空间内生成新材料,而不是在数据范围内的笛卡尔空间中生成新材料。在这项工作中,我们使用以原子为中心的对称函数来实现这种端到端的结构生成方法,作为表示和条件变化自动编码器作为生成模型。我们能够成功地生成亚纳米PT纳米颗粒的新颖和有效的原子结构,作为概念证明。此外,该方法可以很容易地扩展到任何合适的结构表示形式,从而为基于结构的生成提供了强大的,可推广的框架。
translated by 谷歌翻译