Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.
translated by 谷歌翻译
原始的“七个图案”阐述了科学计算领域的基本方法的路线图,其中图案是一种捕获计算和数据移动模式的算法方法。我们介绍了“仿真智力的九个主题”,是一种开发和整合的路线图,以合并科学计算,科学模拟和人工智能所必需的基本算法。我们称之为合并模拟智能(SI),短暂。我们认为模拟智能的主题是相互连接的和相互依存的,很像操作系统层中的组件一样。使用这种隐喻,我们探讨了模拟智能操作系统堆栈(Si-Stack)和其中图案的各层的性质:(1)多种物理和多尺度建模; (2)替代建模和仿真; (3)基于仿真的推理; (4)因果建模和推理; (5)基于代理的建模; (6)概率编程; (7)可微分的编程; (8)开放式优化; (9)机器编程。我们相信图案之间的协调努力提供了加速科学发现的巨大机会,从综合生物和气候科学中解决逆问题,指导核能实验,并预测社会经济环境中的紧急行为。我们详细说明了Si-stack的每层,详细说明了最先进的方法,提出了示例以突出挑战和机遇,并倡导具体的方法来推进主题和与其组合的协同作用。推进和整合这些技术可以实现稳健且有效的假设仿真 - 分析类型的科学方法,我们用几种使用案例为人机组合和自动化学介绍。
translated by 谷歌翻译
We present POTATO, the Portable text annotation tool, a free, fully open-sourced annotation system that 1) supports labeling many types of text and multimodal data; 2) offers easy-to-configure features to maximize the productivity of both deployers and annotators (convenient templates for common ML/NLP tasks, active learning, keypress shortcuts, keyword highlights, tooltips); and 3) supports a high degree of customization (editable UI, inserting pre-screening questions, attention and qualification tests). Experiments over two annotation tasks suggest that POTATO improves labeling speed through its specially-designed productivity features, especially for long documents and complex tasks. POTATO is available at https://github.com/davidjurgens/potato and will continue to be updated.
translated by 谷歌翻译
Open peer review is a growing trend in academic publications. Public access to peer review data can benefit both the academic and publishing communities. It also serves as a great support to studies on review comment generation and further to the realization of automated scholarly paper review. However, most of the existing peer review datasets do not provide data that cover the whole peer review process. Apart from this, their data are not diversified enough as they are mainly collected from the field of computer science. These two drawbacks of the currently available peer review datasets need to be addressed to unlock more opportunities for related studies. In response to this problem, we construct MOPRD, a multidisciplinary open peer review dataset. This dataset consists of paper metadata, multiple version manuscripts, review comments, meta-reviews, author's rebuttal letters, and editorial decisions. Moreover, we design a modular guided review comment generation method based on MOPRD. Experiments show that our method delivers better performance indicated by both automatic metrics and human evaluation. We also explore other potential applications of MOPRD, including meta-review generation, editorial decision prediction, author rebuttal generation, and scientometric analysis. MOPRD is a strong endorsement for further studies in peer review-related research and other applications.
translated by 谷歌翻译
In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译
Recently, domain-specific PLMs have been proposed to boost the task performance of specific domains (e.g., biomedical and computer science) by continuing to pre-train general PLMs with domain-specific corpora. However, this Domain-Adaptive Pre-Training (DAPT; Gururangan et al. (2020)) tends to forget the previous general knowledge acquired by general PLMs, which leads to a catastrophic forgetting phenomenon and sub-optimal performance. To alleviate this problem, we propose a new framework of General Memory Augmented Pre-trained Language Model (G-MAP), which augments the domain-specific PLM by a memory representation built from the frozen general PLM without losing any general knowledge. Specifically, we propose a new memory-augmented layer, and based on it, different augmented strategies are explored to build the memory representation and then adaptively fuse it into the domain-specific PLM. We demonstrate the effectiveness of G-MAP on various domains (biomedical and computer science publications, news, and reviews) and different kinds (text classification, QA, NER) of tasks, and the extensive results show that the proposed G-MAP can achieve SOTA results on all tasks.
translated by 谷歌翻译
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
translated by 谷歌翻译
Recent studies have shown the impressive efficacy of counterfactually augmented data (CAD) for reducing NLU models' reliance on spurious features and improving their generalizability. However, current methods still heavily rely on human efforts or task-specific designs to generate counterfactuals, thereby impeding CAD's applicability to a broad range of NLU tasks. In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework. AutoCAD first leverages a classifier to unsupervisedly identify rationales as spans to be intervened, which disentangles spurious and causal features. Then, AutoCAD performs controllable generation enhanced by unlikelihood training to produce diverse counterfactuals. Extensive evaluations on multiple out-of-domain and challenge benchmarks demonstrate that AutoCAD consistently and significantly boosts the out-of-distribution performance of powerful pre-trained models across different NLU tasks, which is comparable or even better than previous state-of-the-art human-in-the-loop or task-specific CAD methods. The code is publicly available at https://github.com/thu-coai/AutoCAD.
translated by 谷歌翻译
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views while preserving specific details of the input image. High-fidelity 3D GAN inversion is inherently challenging due to the geometry-texture trade-off in 3D inversion, where overfitting to a single view input image often damages the estimated geometry during the latent optimization. To solve this challenge, we propose a novel pipeline that builds on the pseudo-multi-view estimation with visibility analysis. We keep the original textures for the visible parts and utilize generative priors for the occluded parts. Extensive experiments show that our approach achieves advantageous reconstruction and novel view synthesis quality over state-of-the-art methods, even for images with out-of-distribution textures. The proposed pipeline also enables image attribute editing with the inverted latent code and 3D-aware texture modification. Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
translated by 谷歌翻译
Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
translated by 谷歌翻译