Transformers have attained superior performance in natural language processing and computer vision. Their self-attention and feedforward layers are overparameterized, limiting inference speed and energy efficiency. Tensor decomposition is a promising technique to reduce parameter redundancy by leveraging tensor algebraic properties to express the parameters in a factorized form. Prior efforts used manual or heuristic factorization settings without hardware-aware customization, resulting in poor hardware efficiencies and large performance degradation. In this work, we propose a hardware-aware tensor decomposition framework, dubbed HEAT, that enables efficient exploration of the exponential space of possible decompositions and automates the choice of tensorization shape and decomposition rank with hardware-aware co-optimization. We jointly investigate tensor contraction path optimizations and a fused Einsum mapping strategy to bridge the gap between theoretical benefits and real hardware efficiency improvement. Our two-stage knowledge distillation flow resolves the trainability bottleneck and thus significantly boosts the final accuracy of factorized Transformers. Overall, we experimentally show that our hardware-aware factorized BERT variants reduce the energy-delay product by 5.7x with less than 1.1% accuracy loss and achieve a better efficiency-accuracy Pareto frontier than hand-tuned and heuristic baselines.
translated by 谷歌翻译
光学计算是一种新兴技术,用于下一代高效人工智能(AI),其速度和效率超高。电磁场模拟对于光子设备和电路的设计,优化和验证至关重要。但是,昂贵的数值模拟显着阻碍了光子电路设计循环中的可扩展性和转环。最近,已经提出了物理信息的神经网络来预测具有预定义参数的部分微分方程(PDE)的单个实例的光场解。它们复杂的PDE公式和缺乏有效的参数化机制限制了其在实际模拟方案中的灵活性和概括。在这项工作中,首次提出了一个被称为Neurolight的物理敏捷神经操作员框架,以学习一个频率域的麦克斯韦PDE家族,以进行超快速的参数光子设备模拟。我们通过几种新技术来平衡神经照明的效率和概括。具体而言,我们将不同的设备离散到统一域中,代表具有紧凑型波的参数PDE,并通过掩盖的源建模编码入射光。我们使用参数效率高的跨形神经块设计模型,并采用基于叠加的增强来进行数据效率学习。通过这些协同方法,神经亮像可以概括为大量的看不见的模拟设置,比数值求解器显示了2个磁性的模拟速度,并且比先前的神经网络模型优于降低54%的预测误差,而降低了约44%的参数。 。我们的代码可在https://github.com/jeremiemelo/neurolight上找到。
translated by 谷歌翻译
随着深度学习模型和数据集的迅速扩展,网络培训非常耗时和资源成本。使用小型合成数据集学习并没有在整个数据集中进行培训,而是一种有效的解决方案。广泛的研究已在数据集凝结的方向上进行了探索,其中梯度匹配可以达到最先进的性能。梯度匹配方法在原始和合成数据集上训练时通过匹配梯度直接靶向训练动力学。但是,对该方法的原理和有效性进行了有限的深入研究。在这项工作中,我们从全面的角度深入研究了梯度匹配方法,并回答了什么,如何和何处的关键问题。我们建议将多级梯度匹配,以涉及类内和类间梯度信息。我们证明,距离函数应集中在角度上,考虑到同时延迟过度拟合的幅度。还提出了一种过度拟合的自适应学习步骤策略,以修剪不必要的优化步骤,以提高算法效率。消融和比较实验表明,与先前的工作相比,我们提出的方法具有优越的准确性,效率和概括性。
translated by 谷歌翻译
模拟/混合信号电路设计是整个芯片设计过程中最复杂,最耗时的阶段之一。由于芯片制造的各种过程,电压和温度(PVT)变化,模拟电路不可避免地会遭受性能降解。尽管在典型条件下自动化模拟电路设计方面已经有很多工作,但在探索在真实且不可预测的硅变化下探索可靠设计的研究有限。针对变化的自动模拟设计需要过度的计算和时间成本。为了应对挑战,我们提出了RobustanAlog,这是一个强大的电路设计框架,涉及优化过程中的变化信息。具体而言,不同变化下的电路优化被认为是一组任务。任务之间的相似之处是杠杆作用,并且可以缓解竞争以实现样本效率高的多任务培训。此外,Robustanalog根据每次迭代中当前的性能来修剪任务空间,从而导致进一步的模拟成本降低。这样,鲁棒可以迅速产生一组电路参数,这些电路参数满足各种变化的各种约束(例如增益,带宽,噪声...)。我们将Robustanalog与贝叶斯优化,进化算法和深层确定性策略梯度(DDPG)进行了比较,并证明Robustanalog可以将所需的优化时间显着减少14-30次。因此,我们的研究提供了一种处理各种真实硅条件的可行方法。
translated by 谷歌翻译
近年来,由于深度学习技术的发展,LiDar Point Clouds的3D对象检测取得了长足的进步。尽管基于体素或基于点的方法在3D对象检测中很受欢迎,但它们通常涉及耗时的操作,例如有关体素的3D卷积或点之间的球查询,从而使所得网络不适合时间关键应用程序。另一方面,基于2D视图的方法具有较高的计算效率,而通常比基于体素或基于点的方法获得的性能低。在这项工作中,我们提出了一个基于实时视图的单阶段3D对象检测器,即CVFNET完成此任务。为了在苛刻的效率条件下加强跨视图的学习,我们的框架提取了不同视图的特征,并以有效的渐进式方式融合了它们。我们首先提出了一个新颖的点范围特征融合模块,该模块在多个阶段深入整合点和范围视图特征。然后,当将所获得的深点视图转换为鸟类视图时,特殊的切片柱旨在很好地维护3D几何形状。为了更好地平衡样品比率,提出了一个稀疏的柱子检测头,将检测集中在非空网上。我们对流行的Kitti和Nuscenes基准进行了实验,并以准确性和速度来实现最先进的性能。
translated by 谷歌翻译
随着最近光学相变材料(PCM)的进步,光子内存中的神经科学大量已经证明了其在光学神经网络(ONN)设计中的优越性,具有接近零静态功耗,光时间延迟和紧凑的占地面积。然而,光子张量核心需要大量硬件重用来实现由于单核刻度有限的矩阵乘法。由此产生的大量PCM写入,导致严重的动态功率和压倒性的PCM,具有有限的写入耐久性。在这项工作中,我们提出了一种协同优化框架,努力,以最大限度地减少高效且可靠的光学内记忆中的整体写作工作。我们首先提出了写知感知培训,以鼓励重量块之间的相似性,并将其与训练后的优化方法相结合,以通过消除冗余写入来减少编程工作。实验表明,突出可以在具有可比性准确度的写入总数和动态功率的总数超过20倍。通过我们的努力,光子内记忆中的内蒙古大量将向机器学习中的可行应用前进,具有保存的准确性,级别更长的寿命和更低的编程能量。
translated by 谷歌翻译
由于深度学习在许多人工智能应用中显示了革命性的性能,其升级的计算需求需要用于巨大并行性的硬件加速器和改进的吞吐量。光学神经网络(ONN)是下一代神经关键组成的有希望的候选者,由于其高并行,低延迟和低能量消耗。在这里,我们设计了一个硬件高效的光子子空间神经网络(PSNN)架构,其针对具有比具有可比任务性能的前一个ONN架构的光学元件使用,区域成本和能量消耗。此外,提供了一种硬件感知培训框架,以最小化所需的设备编程精度,减少芯片区域,并提高噪声鲁棒性。我们在实验上展示了我们的PSNN在蝴蝶式可编程硅光子集成电路上,并在实用的图像识别任务中显示其实用性。
translated by 谷歌翻译
视觉变形金刚(VITS)引起了对计算机视觉任务的卓越性能的关注。为解决单级低分辨率表示的限制,先前的工作适用于具有分层体系结构的高分辨率密集预测任务,以生成金字塔功能。然而,考虑到其分类的顺序拓扑,仍然对VITS探索多种表达学习。在这项工作中提高具有更多能力的VITS来学习语义和空间精确的多尺度表示,我们展示了高分辨率多分支架构的高分辨率多分支架构,带有视觉变压器,称为HRVIT,推动静脉前沿预测任务到新级别。我们探索异构分支设计,降低线性层中的冗余,并增加模型非线性以平衡模型性能和硬件效率。拟议的HRVIT在ADE20K上达到50.20%的Miou,83.16%Miou,用于语义细分任务,超过最先进的麻省理工学院和克斯犬,平均+1.78 miou改善,参数减少28%和21%拖鞋,展示HRVIT作为强大视力骨架的潜力。
translated by 谷歌翻译
在本文中,我们解决了预测拥挤空间中的Egentric相机佩戴者(自我)的轨迹的问题。从现实世界中走向周围的不同相机佩戴者数据的数据学到的轨迹预测能力可以转移,以协助导航中的人们在导航中的人们障碍,并在移动机器人中灌输人类导航行为,从而实现更好的人机互动。为此,构建了一个新的Egocentric人类轨迹预测数据集,其中包含在佩戴相机的拥挤空间中导航的人们的真实轨迹,以及提取丰富的上下文数据。我们提取并利用三种不同的方式来预测摄像机佩戴者的轨迹,即他/她过去的轨迹,附近人的过去的轨迹以及场景语义或场景的深度等环境。基于变压器的编码器解码器神经网络模型,与熔化多种方式的新型级联跨关注机构集成,已经设计成预测相机佩戴者的未来轨迹。已经进行了广泛的实验,结果表明,我们的模型在Emocentric人类轨迹预测中优于最先进的方法。
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译