语言是人类交流的主要工具,其中幽默是最有吸引力的部分之一。使用计算机,又称自然语言生成(NLG)的人类产生自然语言,已广泛用于对话系统,聊天机器人,机器翻译以及计算机AID创建,例如Idea Generations,剧本。但是,自然语言的幽默方面相对不足,尤其是在预训练的语言模型时代。在这项工作中,我们旨在初步测试NLG是否可以像人类一样产生幽默。我们构建了一个新的数据集,该数据集由众多数字化的中国可笑的串扰脚本(称为c $^3 $简称),该脚本适用于1800年代以来名为“ Xiangsheng”的流行中国表演艺术。 (为了方便非中国扬声器,我们在本文中称为“ Xiangsheng”的“ Crosstalk”。)我们基准了各种一代方法,包括训练seq2seq,微调中级PLMS和大型PLMS(大型PLMS)(有无微调)。此外,我们还进行了人类评估,表明1)大规模预处理在很大程度上提高了串扰的产生质量; 2)即使是从最佳PLM产生的脚本也远非我们的期望,只有65%的人类创建的串扰质量。我们得出结论,使用大型PLM可以在很大程度上改善幽默的产生,但仍处于起步阶段。 \ url {https://github.com/anonno2/crosstalk-generation}公开可用数据和基准代码。
translated by 谷歌翻译
To increase the quality of citizens' lives, we designed a personalized smart chair system to recognize sitting behaviors. The system can receive surface pressure data from the designed sensor and provide feedback for guiding the user towards proper sitting postures. We used a liquid state machine and a logistic regression classifier to construct a spiking neural network for classifying 15 sitting postures. To allow this system to read our pressure data into the spiking neurons, we designed an algorithm to encode map-like data into cosine-rank sparsity data. The experimental results consisting of 15 sitting postures from 19 participants show that the prediction precision of our SNN is 88.52%.
translated by 谷歌翻译
随着人工智能(AI)的迅速发展,可以预见的是,动态模拟器和AI的整合将大大提高对未来电力系统的动态分析的准确性和效率。为了探索电力系统动态模拟的交互机制和AI的相互作用机制,提出了面向AI的动力系统动态模拟器的一般设计,该设计由具有神经网络支持性的高性能模拟器和灵活的外部和内部应用程序编程接口(APIS)组成(APIS(APIS) )。在API的支持下,模拟辅助AI和AI辅助模拟形成了功率系统动态模拟与AI之间的全面交互机制。该设计的原型由基于高效的机电模拟器实施并公开。该原型的测试是在四种情况下进行的,包括样本生成,基于AI的稳定性预测,数据驱动的动态组件建模和AI AIDED稳定性控制,这证明了设计和实施的有效性,灵活性和效率面向AI的动力系统动态模拟器。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译